动态视角下自主目标识别与跟踪
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391TH741

基金项目:

国家自然科学基金(61503274)、沈阳市科技计划(18013015)、沈阳市双百工程计划(Z185013)项目资助


Autonomous target recognition and tracking under dynamic perspective
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对动态视角下由于相机高频率晃动导致的常用目标识别及跟踪算法准确率较低的问题,提出了一种基于Canny和GrabCut的自适应窗口式目标跟踪算法。首先使用加速稳健特征(SURF)算法学习图片库并记忆图片特征,设计基于SURF算法的记忆库目标识别算法;然后,对上述目标区域采用GrabCut的自适应优化算法进行感兴趣区域分割,实现目标粗略跟踪;最后,设计基于Canny算法的窗口式算法进行目标精确追踪。实验结果表明,所设计的算法能快速地识别目标、精确地勾勒出其轮廓并且稳定跟踪目标,相比其他算法,算法在实时性和精确性方面有显著提高。

    Abstract:

    Aiming at the low accuracy of common target recognition and tracking algorithms caused by camera high frequency sloshing under dynamic view, this paper proposes an adaptive window target tracking algorithm based on Canny and GrabCut. Firstly, the speeded up robust features (SURF) algorithm is used to learn the picture library and remember the picture features. The memory target recognition algorithm based on SURF algorithm is designed. Then, GrabCut adaptive optimization algorithm is used to segment the region of interest to achieve rough tracking of the target. Finally, a windowed algorithm based on Canny is achievedtoaccurately track the target. The experimental results show that the algorithm designed in this paper can quickly identify the target and accurately outline its contour. Moreover, the target can be stably tracked. Compared with other algorithms, the algorithm has obvious improvement in computation efficiency and accuracy.

    参考文献
    相似文献
    引证文献
引用本文

韩晓微,岳高峰,谢英红,高源,鲁正.动态视角下自主目标识别与跟踪[J].仪器仪表学报,2019,40(3):221-229

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-14
  • 出版日期:
文章二维码