基于改进Mask RCNN和Kinect的服务机器人物品识别系统
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391TH89

基金项目:

国家自然科学基金(11672044)项目资助


Service robot item recognition system based on improved Mask RCNN and Kinect
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    服务机器人在近年来得到了快速的发展,其应用的算法也在不断地更迭,目标检测算法便是其中之一。在保证目标检测精度的前提下,目标检测速度决定着机器人目标物抓取的效率。因此将远距离小目标场景作为测试场景,改进现有网络模型,目的是在保证检测精度的前提下提升检测速度。掩码区域卷积神经网络(Mask RCNN)是目前目标检测领域应用较广的算法,通过对其网络结构研究发现,掩码分支和过多的全连接层会占用大量网络检测时间;同时,Mask RCNN提取到的特征图具有较高的维度,其会占用大量的计算内存,产生大量的计算任务。为此,Mask RCNN进行改进,如去掉掩码分支和多余的全链接层;将头部轻量化区域卷积神经网络(LHRCNN)引入到Mask RCNN中;调整区域建议网络(RPN)中锚点(Anchor)的比例。最后,本文在带有KinectⅡ的家庭服务机器人平台上对改进的Mask RCNN进行测试,测试结果表明,与原始的Mask RCNN相比,改进的Mask RCNN在保证检测精度的同时,可以大幅提高算法运行的速度,检测时间缩短2倍以上, 提高服务机器人目标抓取任务的效率。

    Abstract:

    The service robot has been developed rapidly in recent years, its application algorithms are constantly alternating, and the item detection algorithm is one of them. Under the premise of ensuring item recognition accuracy, the item detection speed determines the efficiency of robot item capture. Therefore, this paper will take the long distance and small item scene as the test scene, and improve the existing network model. The aim is to improve the detection speed on the premise of ensuring detection accuracy. Mask regionsbased convolution neural network (Mask RCNN) is a widely used algorithm in the field of item detection. Through the studying its network structure, it is found that the mask branch and excessive full connection layers will take up a lot of network detection time. At the same time, the feature map extracted with mask RCNN has a higher dimension, which will take up a lot of computing memory and produce a large number of computing tasks. To tackle these problems, in this paper, the mask RCNN network is improved by removing the mask branch and redundant full link layer, the lighthead RCNN (LHRCNN) is introduced into the mask RCNN network, and the anchor ratio in the region proposal network (RPN) is adjusted. Finally, the improved Mask RCNN network was tested on the home service robot platform with Kinect Ⅱ. The test results demonstrate that compared with the original mask RCNN, the improved Mask RCNN network can greatly improve the running speed of the algorithm, while ensure the detection accuracy at the same time. The detection time is shortened by more than two times, and the proposed method improves the efficiency of the item catch task of service robot.

    参考文献
    相似文献
    引证文献
引用本文

石杰,周亚丽,张奇志.基于改进Mask RCNN和Kinect的服务机器人物品识别系统[J].仪器仪表学报,2019,40(4):216-228

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-17
  • 出版日期:
文章二维码