穿戴式钢琴弹奏手套智能感知与手势识别技术
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH89TP274+.2

基金项目:

国家自然科学基金 (61703207)、江苏省自然科学基金(BK20170801)、航空基金(2017ZC52017)、中央高校基本科研业务费专项资金(NG2019001,NT2019008)项目资助


An intelligent perception and gesture recognition technology for wearable pianoplaying glove
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    钢琴弹奏手套是一种新兴的智能可穿戴式设备,通过手套中的多惯性传感器对钢琴弹奏者的手势状态进行实时感知和分析,可以让钢琴学习者实时了解弹奏手势是否规范,从而有效提高钢琴学习效率和兴趣,并降低学习成本。区别于其他应用领域中的手势,钢琴弹奏手势具有多样性、快速性、大动态以及强时变的特点,设计了一套基于惯性数据手套与红外检测杆的钢琴弹奏手势识别系统,并提出一种基于机器学习的钢琴弹奏手势识别方法,以惯性数据手套与红外检测杆的输出作为数据样本,针对钢琴弹奏手势特性,进行多模态手势特征的提取并采用分层识别算法改善识别效果。实验表明,所提出的方法能够较好的适应钢琴弹奏手势识别需求,识别准确率达到99%以上。

    Abstract:

    Pianoplaying glove is one kind of emerging intelligent wearable equipment. By using the multiinertial sensors in glove, the gesture of piano player can be realtime perceived and analyzed. The learners can know in realtime whether the playing gesture is right.Thus,the efficiency and interest of piano learning can be improved and the cost of learning can be reduced effectively. Different from gestures in other application fields, piano playing gestures have the characteristics of diversity, rapidity, large dynamics and strong timevarying. In this study, the piano playing gesture recognition system based on inertial data glove and infrared detecting rod is designed. A method of gesture recognition for piano playing based on machine learning is proposed. The output of inertia data gloves and infrared detection rods are used as data sample. According to the characteristics of piano playing gestures, multimodal gesture features are extracted.Hierarchical recognition algorithm is adopted to improve the recognition effectiveness. Experimental results show that the proposed recognition method can better meet the needs of gesture recognition in piano playing. The recognition accuracy rate is better than 99%.

    参考文献
    相似文献
    引证文献
引用本文

叶素芬,赖际舟,吕品,朱超群.穿戴式钢琴弹奏手套智能感知与手势识别技术[J].仪器仪表学报,2019,40(5):187-194

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-10
  • 出版日期:
文章二维码