基于SSVEP_SSA融合的混合脑机接口研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R318TH77

基金项目:

国家自然科学基金(61871173)项目资助


Research on hybrid BCI system combined SSVEP and SSA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前基于体感选择性注意范式的脑机接口控制指令数少,信息传输率低等缺点,提出了一种全新的多模态混合脑机接口系统。该系统融合稳态视觉刺激(SSVEP)和体感选择性注意范式(SSA),在外部视觉和体感刺激的作用下,诱发大脑产生稳态视觉电位和事件相关去同步现象。同时,为了解决传统脑电信息特征提取中需要大量先验知识等问题,引入深度学习算法对混合脑机接口信息进行意图解码,该方法将多通道的时域信息转换成具有时-频-空域三维特征的二维特征图。对8名受试者的离线实验显示,平均识别准确率达到8135%,确认了所提出的基于SSVEP_SSA融合的多模态混合脑机接口是可行的,实现了脑机接口(BCI)系统的指令集扩展和高精度解码。

    Abstract:

    The current somatosensory selective attention based brain computer in terface (BCI) system has disadvantage of less command for multidegree deviceandlow information transmission rate. To solve these problems,a novel hybrid BCI system combing steadystate visual evoked potential (SSVEP) and somatosensory selective attention (SSA) is proposed in the paper. The SSVEP and event related desynchronization (ERD) can be elicited withtheaidof visual and somatosensory stimuli. In order to overcome the shortcomings of conventional feature extraction method which needs more heuristic knowledge, a deep learning algorithm is used to decode the EEG signal. In this method, the temporaldomainsignals of several channels are converted into temporalfrequencyspatial domain feature image. Eight subjects arerecruited to participate the experiment. The average accuracy of offline test is 8135%, which indicates that the proposed multimodal hybrid BCI based on SSVEP_SSA is feasible for instruction set extension and decoding precisely.

    参考文献
    相似文献
    引证文献
引用本文

韩向可,郭士杰.基于SSVEP_SSA融合的混合脑机接口研究[J].仪器仪表学报,2019,40(5):213-220

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-10
  • 出版日期:
文章二维码