基于边缘重建的双绞线绞距实时检测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

宁波市公益(2019C50020)、宁波市国际合作(2016D10008)项目资助


Twistedpair pitch realtime detection method based on edge reconstruction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    至今,国内多数网线工厂双绞线绞距的检测仍然依靠人工抽样检测完成,国内现有的基于机器视觉的绞距检测方法大都停留在实验室阶段,在实际生产线上的检测效果无法满足实际工业要求。针对这一问题,提出了一种基于边缘重建的双绞线绞距实时检测方法。首先通过快速双绞线边缘检测法提取双绞线边缘数据,再通过Hammerstein模型及杂交粒子群算法重建双绞线边缘,帮助过滤噪声得到绞点位置精准的光滑边缘曲线。在此基础上,通过查找绞点位置可最终得到双绞线的绞距数据。通过测试,所提方法每分钟可检测125 m的线缆产品,检测误差控制在-161%~158%之间,各项指标均能满足工业实时检测的要求,有较高的实用价值。

    Abstract:

    Up to now, in most network cable factories, the detection of twistedpair pitch is still completed by manual sampling test. In china, most of the existing twistedpair pitch detection methods based on machine vision are remained in laboratory stage. In real production line, the detection results of these methods cannot satisfy the actual industrial detection requirements. Aiming at this problem, a realtime detection method is proposed for twistedpair pitch based on edge reconstruction. The method firstly extracts the edge data of the twistedpair with fast twisted pair edge detection method, and then reconstructs the twisted pair edge with Hammerstein model and hybrid particle swarm optimization (HPSO) algorithm. By this way, the method can filter out noise and obtain smooth twistedpair edge curve with precise twisted point position. On this basis, the twistedpair pitch data can be obtained finally through finding the twisted point positions. Through testing, the method can detect 125 m cable product per minute, the detection error is controlled between -161%~158%, all the specifications can meet the requirements of industrial realtime detection, and this method has high practical application value.

    参考文献
    相似文献
    引证文献
引用本文

李俊晖,石守东,谢志军,徐淼华,方劲.基于边缘重建的双绞线绞距实时检测方法[J].仪器仪表学报,2019,40(6):86-95

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-10
  • 出版日期:
文章二维码