基于EWT_Hankel_SVD的矿山微震信号特征提取及分类方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH7TD76

基金项目:

江西省教育厅科学技术研究项目(GJJ150618)资助


Feature extraction and classification method of mine microseismic signals based on EWT_Hankel_SVD
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对矿山微震与爆破振动信号自动识别难的问题,提出了基于经验小波变换_Hankel矩阵_奇异值分解(EWT_Hankel_SVD)的矿山微震信号特征提取及分类方法。首先,针对微震信号的瞬态性和多样性,对EWT频谱分割方法进行改进,并利用仿真信号表明了方法的有效性。其次利用改进EWT对实际矿山采取的微震和爆破振动信号进行分解,借助相关性分析筛选得到f1~f5 5个主分量,进而分别利用分量f1~f5构造Hankel矩阵,计算各Hankel矩阵的最大奇异值和奇异熵。最后利用遗传算法优化的支持向量机(GASVM)对微震和爆破信号进行分类识别。结果表明,爆破振动信号分量f1~f4的奇异熵要大于岩体微震信号分量f1~f4的奇异熵,爆破振动信号分量f1~f5的最大奇异值要大于岩体微震信号分量f1~f5的最大奇异值。改进EWT识别效果要优于传统EWT和经验模态分解,GASVM识别效果要优于支持向量机、逻辑回归和Bayes判别法,且基于EWT_Hankel_SVD和GASVM分类准确率达到94%。

    Abstract:

    To solve the difficult problem of automatic identification rock mass microseism and blasting vibration signals, a feature extraction and classification method based on empirical wavelet transform_Hankel matrix_singular value decomposition (EWT_Hnakel_SVD) is proposed. Firstly, EWT spectrum segmentation method is improved to adapt the transient and diversity of microseism signals. Its effectiveness is demonstrated by using simulation signals. Then, the improved EWT is used to decompose the microseismic and blasting vibration signals. Five principal components of f1~f5 are obtained by correlation analysis, which are utilized to formulate the Hankel matrix. The maximum singular value and singular entropy of each Hankel matrix are calculated. Finally, the genetic algorithmoptimized support vector machine (GASVM) is adopted to classify the microseism and blasting signals. Experimental results show that the singular entropy of the blasting vibration signal component fl~f4 is too much singular entropy of the rock mass microseismic signal component fl~f4, and the maximum singular value of the blasting vibration signal component fl~f5 is greater than that of the rock mass microseismic signal component fl~f5. The improved EWT recognition is better than traditional EWT and empirical mode decomposition. GASVM recognition effect is better than support vector machine, logistic regression and Bayes discriminant method. The method based on EWT_Hankel_SVD and GASVM classification can reach accuracy rate 94%.

    参考文献
    相似文献
    引证文献
引用本文

程铁栋,吴义文,罗小燕,戴聪聪,尹宝勇.基于EWT_Hankel_SVD的矿山微震信号特征提取及分类方法[J].仪器仪表学报,2019,40(6):181-191

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-10
  • 出版日期:
文章二维码