基于机器视觉的手机尾插件精密测量方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH166TP392

基金项目:

陕西省重点研发计划(2018GY199)、物联网与智能技术科技创新团队建设(SSY18TD05)项目资助


Research on precision measurement method for mobile phone tail plug part based on machine vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于机器视觉的小尺寸不规则零件精密测量方法和系统,方法包括图像采集、图像增强、图像配准、边缘检测、目标直线提取、相机标定和计算测量环节。针对传统尺度不变特征变换(SIFT)匹配算法完全忽略特征点之间的几何关系,对于灰度变化较平滑的图像在寻找匹配特征点对时易产生较多误匹配的问题,引入轮廓匹配获取图像几何信息、对SIFT特征点匹配进行约束,并通过随机样本一致(RANSAC)算法去除噪声点对的影响、精确估计几何变换矩阵;针对现有Hough变换拟合直线算法对非线性边缘易在Hough空间形成伪峰、影响边缘检测精准度的问题,设计了Hough空间投票权重分配新策略来抑制伪峰的产生。实验结果表明:与传统方法相比,所提出的方法特征匹配精度提高了12%,直线检测精准度提高了22%,系统测量精度达到0015 mm。

    Abstract:

    Taking the geometric size of the mobile phone tail plug parts as detection object, a precise measurement method and system of small size, irregular shape parts based on machine vision is proposed. The method includes image acquisition, image enhancement, image registration, edge detection, target line extraction, camera calibration and computational measurement. Aiming at the problems that the traditional scaleinvariant feature transform(SIFT) matching algorithm completely ignores the geometric relationship among different feature points and is prone to more mismatches when searching for matching feature points in the workpiece images with smooth gray change, an improved image registration algorithm is proposed, the contour matching is introduced to acquire image geometric information and constrain the SIFT feature point matching, and the random sample consensus(RANSAC) algorithm is used to remove the influence of noise point pair and precisely estimate the parameters of geometric transformation array. Aiming at the facts that the existing Hough transform fitting line algorithm can easily form pseudopeaks in Hough space for nonlinear edges and affect edge detection accuracy, a new strategy of spatial voting weight allocation in Hough space is designed to suppress the pseudopeak generation. The experiment results show that compared with traditional method, the proposed method improves the accuracy of feature point matching by 12% and the accuracy of line detection by 22%, and the measurement accuracy of the proposed system reaches 0015 mm。

    参考文献
    相似文献
    引证文献
引用本文

张喜民,余奇颖,张金博,付安英.基于机器视觉的手机尾插件精密测量方法研究[J].仪器仪表学报,2019,40(10):47-54

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-09
  • 出版日期:
文章二维码