抖动干扰下运动目标精准检测与跟踪算法设计
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH89

基金项目:

国家自然科学基金(61603189)项目资助


Design of accurate detection and tracking algorithm for moving target under jitter interference
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对在抖动干扰下运动目标检测精度较差的问题,提出了一种基于光流法与三帧差分法的运动目标检测算法,首先用基于卢卡斯卡那得(LK)光流法的稳像算法对视频去抖,然后用三帧差分法提取目标。仿真结果表明,稳像后的峰值信噪比 (PSNR)值提高了36 dB左右,所设计算法在抖动干扰下能够准确提取出目标,在测试平台上的平均处理速度为28 fps;同时,针对传统核相关滤波(KCF)算法对尺度变化和部分遮挡目标跟踪性能较差的问题,设计了一种改进的KCF算法,通过对目标构造图像金字塔,计算滤波器在图像金字塔不同层上的响应,找到响应最大层并更新下一帧目标位置,同时加入了遮挡检测机制,减小目标遮挡对跟踪的影响。仿真结果表明,改进后的算法对尺度变化和部分遮挡的目标跟踪鲁棒性更优,可实现对目标的稳定跟踪,处理速度为33 fps。通过与KCF算法进行比较说明该算法的准确率提高了42%,成功率提高了118%。

    Abstract:

    Aiming at the problem of poor detection accuracy for moving targets under jitter interference, a moving target detection algorithm based on optical flow method and threeframe difference method is proposed. Firstly the image stabilization algorithm based on LK (LucasKanade) optical flow method is used to dejitter the video, then the threeframe difference method is used to extract the target. Simulation results show that the PSNR (Peak Signal to Noise Ratio) value is increased by 36 dB after image stabilization, and the designed algorithm can accurately extract the target under jitter interference, the average processing speed on the test platform is 28 fps. At the same time, aiming at the problem that traditional KCF (Kernelized Correlation Filter) algorithm has poor tracking performance for scalechanging and partially occluded targets, an improved KCF algorithm is designed, which constructs the image pyramid of the target, then calculates the filter response on different layers of the image pyramid, finds the layer with largest response and updates the target location of next frame. Meanwhile, an occlusion detection mechanism is introduced in the algorithm, which reduces the impact of target occlusion on tracking. Simulation results indicate that the improved algorithm has stronger robustness to the scalechanging and partially occluded targets, and can achieve stable target tracking, the processing speed of the algorithm is 33 fps. Compared with the KCF algorithm, the precision of the proposed algorithm is increased by 42% and the success rate is increased by 118%.

    参考文献
    相似文献
    引证文献
引用本文

郑浦,白宏阳,李政茂,郭宏伟.抖动干扰下运动目标精准检测与跟踪算法设计[J].仪器仪表学报,2019,40(11):90-98

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-08
  • 出版日期:
文章二维码