基于局部和全局信息的快速三维人耳识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391TH164

基金项目:

国家自然科学基金(51475092,61462072)、江苏省自然科学基金(BK20181269)项目资助


Fast 3D ear recognition based on local and global information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有基于迭代最近点法(ICP)的三维人耳识别方法计算量大,配准时间长,且容易陷入局部最优,同时用于配准的人耳含有冗余信息,对配准造成干扰。基于此提出一种基于局部和全局信息的快速三维人耳识别方法,根据内部形状特征提取关键点并实现人耳归一化;提取低维度局部描述子实现关键点匹配并得到候选列表,之后先通过快速点特征直方图进行粗配准,最后用带法向量信息的改进ICP算法进行精配准得到识别结果。基于UNDJ2数据库进行身份识别实验,并与一些经典方法的结果进行对比分析。实验表明关键点特征提取仅需 0026 s,关键点匹配仅需 0015 s,耗时很短。身份识别实验获得了9855% 的Rankone识别率,证明该方法与其他现有算法相比,识别速度更快,识别率更高。

    Abstract:

    Most existing 3D ear recognition methods are based on the iterative closet point (ICP) algorithm that requires large amount of calculation and long matching time. It is easy to fall into the local optimum problem. Meanwhile, the ear region used for registration contains much redundant information. To solve these problems, a fast 3D ear recognition method is proposed in this study, which is based on the local and global information. Firstly, key points are detected according to internal shape features. In this way, the normalization of the ear region is achieved. Secondly, the lowdimensional local features are extracted to realize key points match. The candidate list is obtained, and the registration process is realized by fast point feature histogram and improved ICP algorithm with the normal vector of the point cloud. The proposed algorithm is evaluated by using the UNDJ2 database. Experimental results show that the key point feature extraction only takes 0026 s, and it takes 0015 s for key point match. The identification experiments show that Rankone recognition rate can reach 9855%, which shows that this method has faster recognition speed and higher recognition rate than other stateoftheart algorithms.

    参考文献
    相似文献
    引证文献
引用本文

钱昱来,盖绍彦,郑东亮,达飞鹏.基于局部和全局信息的快速三维人耳识别[J].仪器仪表学报,2019,40(11):99-106

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-08
  • 出版日期:
文章二维码