混响环境下移动机器人语音控制方法及系统实现
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH113

基金项目:

国家自然科学基金青年基金(61803058)、重庆市自然科学基金(cstc2018jcyjAX0385)项目资助


Speech control method and system realization of mobile robot in reverberation environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了满足移动机器人交互控制多样性需求,提升移动机器人的语音控制性能,设计基于语音的移动机器人控制系统。通过对控制信号传递过程和机器人使用环境中语音信号噪音源分析,制定出移动机器人语音控制系统组成方案,给出前端语音识别部分实现的主要流程,重点对语音增强的解混响算法进行设计。充分利用语音潜在的谱特征,将非负矩阵分解和深度神经网络结合提出一种解混响算法,先通过矩阵分解得到语音信号特征,再生成特征矢量来训练激活函数,降低深度神经网络模型的训练复杂度,经过对比分析表明该算法对解决语音混响问题具有优势。编写控制软件并嵌入语音识别算法,搭建工业移动机器人语音控制平台来验证语音控制系统有效性,在混响环境下不同人对机器人多个动作进行语音控制实验,结果表明该系统能够实现移动机器人语音控制,所提出的语音识别方法可使机器人在03、06和09 s的混响条件下动作正确平均执行率分别能达到96%、95%和93%以上。

    Abstract:

    In order to meet the diversity requirements of mobile robot interaction control and improve the speech control performance of mobile robot, a speechbased mobile robot control system is designed. Through analyzing the control signal transmission process and speech signal noise source of the robot in using environment, the composition scheme of the mobile robot speech control system is made up. The main flow for the implementation of front end speech recognition section is given. And the dereverberation algorithm for speech enhancement is emphatically designed. By fully utilizing the potential spectral features of speech, a dereverberation algorithm is proposed based on combined nonnegative matrix factorization and deep neural network. Firstly, the speech signal features are obtained through matrix decomposition, and then the feature vector is generated to train the activation function, which reduces the training complexity of the deep neural network model. The comparison analysis shows that the proposed algorithm possesses superiority in solving the speech reverberation problem. The control software was written, which was embedded in the speech recognition algorithm. A speech control platform of industrial mobile robot was built to verify the effectiveness of the speech control system. In the reverberation environment, speech control experiments were conducted, in which different people performed multiple actions on the robot. The results show that the system can realize the speech control of mobile robots. The proposed speech recognition method can achieve the average correct execution rates of actions of 96%, 95% and 93%, respectively for the mobile robot under the reverberation conditions of 03, 06 and 09 s.

    参考文献
    相似文献
    引证文献
引用本文

李艳生,刘园,张毅,杨美美.混响环境下移动机器人语音控制方法及系统实现[J].仪器仪表学报,2019,40(11):165-171

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-08
  • 出版日期:
文章二维码