基于多元函数粒子群的齿轮箱检测优化方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH7ATH13ATH17A

基金项目:

国家自然科学基金(51405313)、河北省自然科学基金(A2016210099,E2019210299)、河北省青年拔尖人才计划(BJ2017047)、石家庄铁道大学在读研究生创新项目(YC2019025)资助


Gearbox detection optimization method based on multivariate function particle swarm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对机车齿轮箱检测获取的多源信号具有数据量大、相关性低和可靠性差等问题,提出一种新型智能优化算法为多元函数粒子群优化算法。研究了粒子种群的异众比率和适应度对惯性权重的影响,在传统粒子群算法的基础上提高了算法的收敛速度及效率,以正则化模态差的适应度函数作为测点数量的评价指标,根据齿轮箱模态振型分析,实现了齿轮箱的多传感器检测优化。以齿轮断齿故障为试验对象,通过与传统检测方法比较分析,准确获取了齿轮箱输入轴转频395 Hz,第三级啮合频率905 Hz以及2~5倍频成分,快速识别了故障齿轮的位置。实验结果表明了该方法能够增强结构参数的识别率,有效提高了故障诊断的准确性,同时为机车故障预警和安全服役提供了关键技术基础。

    Abstract:

    Aiming at the problems of large data volume, low correlation and poor reliability of the multisource signal obtained in locomotive gearbox detection, a new intelligent optimization algorithmmultivariate function particle swarm optimization algorithm is proposed. The influence of the variation ratio and fitness of the particle population on the inertia weight is studied. Based on traditional particle swarm optimization algorithm, the convergence speed and efficiency of the algorithm are improved. Taking the fitness function of the regularized modal difference as the evaluation index of the number of the measurement points, the multisensor detection optimization of the gearbox is realized according to the modal vibration type analysis of the gearbox. Taking the tooth break fault of the gearbox as the measurement object, through comparative analysis with traditional detection methods, the proposed method accurately obtain the results: the gearbox input shaft rotation frequency of 395 Hz, the thirdstage meshing frequency of 905 Hz and its 2~5 harmonics components, then the position of the faulty gear is identified quickly. The experiment results show that the proposed method can enhance the recognition rate of structural parameters, effectively improves the fault diagnosis accuracy and also provides a key technical foundation for locomotive fault warning and safe service.

    参考文献
    相似文献
    引证文献
引用本文

任彬,李思雯,杨绍普,郝如江.基于多元函数粒子群的齿轮箱检测优化方法[J].仪器仪表学报,2019,40(12):26-35

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-19
  • 出版日期:
文章二维码