基于深度语义分割的遥感图像海面舰船检测研究*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

中图分类号: TP753TH766文献标识码: A国家标准学科分类代码: 5104050

基金项目:

*基金项目:国家自然科学基金(61901081)、中央高校青年教师科技创新项目(3132018180)资助


Sea surface ship detection based on deep semantic segmentation using remote sensing image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:针对在复杂海况下,遥感图像舰船检测容易受到海杂波、薄云、海岛等影响,导致检测结果可靠性低的问题,引入了端对端的深度语义分割方法,将深度卷积神经网络与全连接条件随机场结合。以ResNet架构为基础,首先将遥感图像经过深度卷积神经网络作为输入,对图像进行粗分割,然后经过改进的全连接条件随机场,利用高斯成对势和平均场近似定理建立条件随机场为递归神经网络作为输出,从而实现了端对端的连接。所提方法在Google Earth和NWPURESISC45建立的数据集上与其他模型进行对比,实验表明,所提方法提高了目标检测精度以及捕获图片精细细节的能力,平均交并比为832%,相对于其他模型具有明显优势,且运行速度快,满足遥感图像海面舰船检测的需求。

    Abstract:

    Abstract:Under complex sea conditions, the ship detection using remote sensing image is easily affected by sea clutter, thin clouds and islands, which results in low reliability of detection. In this study, an endtoend deep semantic segmentation method is proposed, which combines the deep convolution neural network with the fully connected conditional random field. Based on ResNet architecture, the remote sensing image is roughly segmented by deep convolution neural network. Using the method of Gaussian pairwise and mean field approximation, the conditional random field is established as the output of the recurrent neural network. In this way, the endtoend connection is achieved. On the dataset provided by Google Earth and NWPURESISC45, the comparison between the proposed method and other models is implemented. Experimental results show that the proposed method can improve the accuracy of target detection and the ability of capturing fine details of images. The mean intersection over union is 832%, which has obvious advantage than other models. And it can also run fast, which meets the requirements of ship detection in remote sensing images.

    参考文献
    相似文献
    引证文献
引用本文

陈彦彤,李雨阳,陈伟楠,张献中,王俊生.基于深度语义分割的遥感图像海面舰船检测研究*[J].仪器仪表学报,2020,41(1):233-240

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-11
  • 出版日期:
文章二维码