基于改进型卷积网络的汽车高度调节器缺陷检测方法*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

中图分类号: TP29TH124文献标识码: A国家标准学科分类代码: 521020

基金项目:

*基金项目:福建省科技计划项目(2018H0014)资助


Defect detection method for automobile height regulator based on improved convolution network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:针对汽车高度调节器生产中人工缺陷检测耗时耗力和传统诊断方法适用性差的问题,运用深度学习提出了一种基于改进型卷积网络的智能检测方法。该方法利用卷积网络提取特征,并且在网络中加入残差网络结构和可分离卷积,在深层网络提高精度的同时减少了参数计算量。改进的结构主要运用卷积层、池化层、批标准化层、softmax层,并引入残差网络结构和可分离卷积。实验结果表明,基于改进型卷积网络的汽车高度调节器缺陷检测方法有着良好的识别精度,在汽车高度调节器多类缺陷的检测实验中,准确率均在99%以上,优于经典卷积网络VGG16。

    Abstract:

    Abstract:Aiming at the problems in automobile height regulator production that manual defect detection is laborintensive and timeconsuming, and traditional diagnosis method has poor applicability, an intelligent detection method based on improved convolution network is proposed using deep learning. In this method, convolution network is used to extract features, and residual network structure and separable convolution are added to the network, which improves the accuracy of deep network and reduces the parameter calculation amount. The improved structure mainly uses convolution layer, pooling layer, batch standardization layer and softmax layer, and introduces residual network structure and separable convolution. The experiment results show that the defect detection method for automobile height regulator based on improved convolution network has good recognition accuracy. In the detection experiment on multiple kinds of defects for automobile height regulator, the accuracy is above 99%, which is superior to that of the classical convolution network VGG16.

    参考文献
    相似文献
    引证文献
引用本文

鲍光海,林善银,徐林森.基于改进型卷积网络的汽车高度调节器缺陷检测方法*[J].仪器仪表学报,2020,41(2):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-02
  • 出版日期:
文章二维码