基于深度神经网络的液压泵泄漏状态识别*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

中图分类号: TH137文献标识码: A国家标准学科分类代码: 46040

基金项目:

*基金项目:国家自然科学基金(51775072)、重庆市教委科学技术研究项目(KJ1729410)、重庆市基础与前沿研究计划(cstc2016jcyjA0526)、重庆市社会事业与民生保障科技创新专项(cstc2017shmsA30016)资助


Recognition of hydraulic pump leakage status based on deep neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:针对液压信号的高度复杂性以及难以识别的特点,构建了一种基于堆栈稀疏自编码器和Softmax的深度神经网络来对液压泵泄漏状态进行识别。利用小波变换和希尔伯特黄变换提取液压信号的低维特征,并输入深度神经网络。通过堆栈稀疏自编码器的逐层学习对特征进行优化并提取出高维特征,然后使用Softmax进行识别。实验结果表明,堆栈稀疏自编码器能够有效地提取液压泵泄漏状态的高维特征,构建的深度神经网络可有效地识别液压泵泄漏状态,识别精度达到了976%。此外与支持向量机、极限学习机、卷积神经网络以及长短期记忆网络相比,深度神经网络具有更好的识别效果。

    Abstract:

    Abstract:Due to the high complexity, it is hard to recognize hydraulic signals. To solve this problem, a deep neural network is formulated for recognition of hydraulic pump leakage status, which is based on the stacked sparse autoencoder and Softmax. The lowlevel features are extracted by the wavelet transform and the HilbertHuang transform. These features are put into the deep neural network. Through the layerbylayer learning of stacked sparse autoencoder, the lowlevel features are optimized and the highlevel features are obtained. Then, Softmax is used to recognize other features. Experimental results show that the stacked sparse autoencoder can effectively extract the highlevel features of hydraulic pump leakage status. The formulated deep neural network can distinguish the pump leakage status and the recognition accuracy is 976%. In addition, compared with extreme learning machine, support vector machine, convolutional neural networks and long shortterm memory, the deep neural network has better recognition effectiveness.

    参考文献
    相似文献
    引证文献
引用本文

陈里里,何颖,董绍江.基于深度神经网络的液压泵泄漏状态识别*[J].仪器仪表学报,2020,41(4):86-97

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-01
  • 出版日期:
文章二维码