基于改进EWT的心电信号基线矫正算法*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

中图分类号: TN91172文献标识码: A国家标准学科分类代码: 51040

基金项目:

*基金项目:国家自然科学基金(61671091, 61971079)、重庆市自然科学基金面上项目(cstc2019jcyjmsxmX0666)、重庆市重点产业共性关键技术创新专项重点研发项目(cstc2017zdcyzdyfX0011)资助


Baseline correction algorithm for ECG signals based on improved EWT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:基线漂移严重影响心电信号的特征提取和识别,而矫正方法的效果决定了医疗诊断的准确性。提出了一种基于经验小波变换和分段多项式拟合理论的心电信号基线矫正算法。利用经验小波变换自适应分割心电信号频谱,在分割区间上构造合适的小波窗提取具有紧支撑的经验模态分量,并重构剔除基漂分量后的经验模态分量,再进行多项式分段拟合来去除残留基线漂移。对同一心电信号的测试结果表明,提出算法相对于对原始经验小波变换算法信噪比改进超过19 dB,在保持较好心电信号形态特征的同时能够有效矫正基线漂移失真。

    Abstract:

    Abstract:Baseline wander seriously influences the feature extraction and recognition of Electrocardiography (ECG) signals. The effect of the baseline correction method determines the accuracy level of medical diagnosis. A baseline correction algorithm for ECG signals based on empirical wavelet transform and piecewise polynomial fitting theory is proposed in this paper. Firstly, empirical wavelet transform is used to adaptively segment the spectrum of ECG signal, on the segmentation interval a suitable wavelet window is constructed to extract the empirical modal component with tight support. The empirical modal component with the baseline wander component removed is reconstructed. Then, the piecewise polynomial fitting is performed to remove the residual baseline wander from the ECG signal. The test results for the same ECG signal show that compared with the original empirical wavelet transform algorithm, the proposed algorithm improves the signaltonoise ratio (SNR) by more than 19 dB. The proposed algorithm can effectively correct the baseline wander distortion while maintaining good morphological characteristics of the ECG signal.

    参考文献
    相似文献
    引证文献
引用本文

李国权,李必禄,林金朝,黄正文,庞宇.基于改进EWT的心电信号基线矫正算法*[J].仪器仪表学报,2020,41(4):156-166

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-01
  • 出版日期:
文章二维码