基于深度学习的膝关节MR图像自动分割方法*
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

中图分类号TP29TH7 文献标识码A国家标准学科分类代码: 5108060

基金项目:

*基金项目:基金项目国家重点研发计划(2018YFB1307803)、国家自然科学基金(6187021848)、中央高校基本科研业务费资助


Autosegmentation method based on deep learning for the knee joint in MR images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:摘要膝关节磁共振图像的自动分割具有重要的临床需求,图像中分割目标的大小不同为精准分割带来了挑战。基于深度学习,提出一种端到端的DRD UNet。以残差模块作为基本模块,增加了对特征的复用能力。利用并行的扩张卷积模块获取不同的感受野,克服了UNet模型单一感受野的局限性,提高了对不同大小目标的分割能力。设计多输出融合的深监督模块,直接利用不同层次的特征实现了信息互补,提高了分割区域的连贯性和准确性。在OAIZIB数据集上测试,平均分割表面距离为02 mm,均方根表面距离为043mm,豪斯多夫距离为522mm,平均戴斯系数(DSC)为9305%,重叠误差为386%。相比于基线UNet和其他现有模型,所提方法在膝关节股骨、胫骨、股骨软骨、胫骨软骨的分割方面都取得了更高的精度。

    Abstract:

    Abstract:Autosegmentation of the knee joint in magnetic resonance (MR) images is significant for clinical requirements. However, it is challenging due to that the segmentation targets have dramatically different sizes. In this study, an endtoend DRD UNet is proposed, which is based on the deep learningframework. Theresidualmodule isused asthebasic modulein theUNetmodel, whichincreasestheabilityof reusingfeature maps. Theparalleldilated convolution modulesareusedtoachieve differentreceptivefields,which can overcomethe limitations of single receptive field in the UNet model and effectively improve the segmentation capability with targets of different sizes. The multioutput fusion deep supervision module is designed to directly utilize the feature maps of different levels. In this way, the information complementarity is obtained, the consistency and accuracy of the segmented regions are improved. The proposed algorithm is evaluated by using the public OAIZIB data set. The average segmented surface distance is 02 mm, the root mean square surface distance is 043 mm, the Hausdorff distance is 522 mm, the average dice similarity coefficient (DSC) is 9305%, and the volume overlap error is 386%. Compared with the conventional UNet and other currently available models, the proposed DRD UNet has better segmentation accuracy.

    参考文献
    相似文献
    引证文献
引用本文

于宁波,刘嘉男,高丽,孙泽文,韩建达.基于深度学习的膝关节MR图像自动分割方法*[J].仪器仪表学报,2020,41(6):140-149

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-01
  • 出版日期:
文章二维码