基于联合注意力孪生网络目标跟踪算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4 TH865

基金项目:

国家自然科学基金(61572244)、辽宁省自然科学基金计划指导计划项目(2019-ZD-0700)资助


Object tracking algorithm based on siamese network with combined attention
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为改进在发生形变、尺度变化及相似目标等多种干扰因素时视频中运动目标的跟踪精度,提出了一种联合注意力的孪 生网络模型。 首先,采用一种轻量级网络 MobileNetV3 作为主干网络对目标进行特征提取;然后,为提高模型对于目标关键特 征的关注度,提出了通道联合空间注意力与孪生网络结合的模型结构;最后,对基于注意力模块与非注意力模块的特征向量互 相关结果进行加权融合获得响应图,并利用该响应图获得目标跟踪结果。 实验结果表明,所提算法在 OTB50 与 OTB100 数据集 上能够获得较好的跟踪效果,两个数据集平均精确率和成功率达到 78. 5% 和 58. 3% 。 此外,当存在形变、尺度变化及相似目标 等不合作因素时,所提算法仍能取得较好的跟踪效果,从而表明该算法具有良好的鲁棒性。

    Abstract:

    In order to improve the tracking accuracy of moving targets in video when various interference factors such as deformation, scale variation and similar targets occur, a siamese network model with combined attention is proposed. Firstly, a lightweight network, i. e. , MobileNetV3, is adopted as the backbone network to extract object feature. Then, in order to improve the attention of the model to the key features of the target, a model structure combining channel combined spatial attention and siamese network is proposed. Finally, through weighting and fusing the cross-correlation results of the feature vectors of attention module and non-attention module, the response map can be obtained, which can be used to obtain the tracking result. Experiment results show that the proposed algorithm can achieve good tracking effect on the OTB50 and OTB100 datasets, the average accuracy and success rate for the two datasets reach 78. 5% and 58. 3% , respectively. In addition, when multiple uncooperative factors, such as deformation, scale variation and similar targets exist, the proposed algorithm can still achieve good tracking effect, which shows that the proposed algorithm has good robustness.

    参考文献
    相似文献
    引证文献
引用本文

杨 梅,贾 旭,殷浩东,孙福明.基于联合注意力孪生网络目标跟踪算法[J].仪器仪表学报,2021,(1):127-136

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码