基于长短时记忆和卷积神经网络的手势肌电识别研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4 TH89

基金项目:

国家自然科学基金(61671197)项目资助


Research on gesture EMG recognition based on long short-term memory and convolutional neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    用表面肌电进行手势识别具有细节信息可选择性和抗外界干扰能力强的优势,但现有方法的适应性和识别准确性还不 足。 通过在卷积神经网络的基础上增加长短时记忆网络处理层,构筑手势识别模型,它能捕获手势动作过程的肌电时序特征, 一定程度上减少了过拟合的现象。 利用手势肌电丰富的时频域信息,提取手势肌电的小波包特征图像,并与手势肌电图像一起 作为识别模型的输入数据,拓展手势识别模型中肌电信号的类别信息,同时在长短时记忆网络处理层与卷积神经网络层之间引 入注意力机制,使得该模型能间接提高关键手势肌电通道的权重。 实验结果证实本识别模型结合肌电两种特征输入的处理方 法,与普通卷积神经网络模型以肌电图像输入的方法相比,识别准确率提升了 4. 25% 。

    Abstract:

    The gesture recognition using electromyography ( EMG) has advantages of selective detail information and strong antiinterference ability. However, the adaptability and recognition accuracy of the existing methods are insufficient. By adding a long-term and short-term memory network layer on the basis of the convolutional neural network, a gesture recognition model is formulated. In this way, it can capture the EMG timing characteristics of the gesture, and the phenomenon of overfitting is reduced to a certain degree. The rich time-frequency domain information of EMG is utilized to extract the wavelet packet feature image of EMG. In addition, the input data of the recognition model are used with the EMG image to expand the category information of the EMG signal. Meanwhile, the attention mechanism is introduced between the time memory network processing layer and the convolutional neural network layer. Then, the model can indirectly increase the weights of the key gesture EMG channels. Compared with the method of ordinary convolutional neural network model using single EMG image, experimental results show that the recognition accuracy rate of the processing methods of EMG two feature inputs is improved by 4. 25% .

    参考文献
    相似文献
    引证文献
引用本文

陈思佳,罗志增.基于长短时记忆和卷积神经网络的手势肌电识别研究[J].仪器仪表学报,2021,(2):162-170

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码