基于变量分块的 KDLV-DWSVDD 间歇过程故障检测算法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP277 TH165. 3

基金项目:

国家自然科学基金(61763029)、甘肃省工业过程先进控制重点实验室开放基金(2019KFJJ01)项目资助


Research on fault detection algorithm of batch process based on KDLV-DWSVDD of variable blocks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    非线性动态间歇过程中,测量变量存在不同的序列相关性,且变量间的交叉相关性会体现在不同的采样时刻上,然而传 统检测方法没有考虑这种变量间的相关性,通常将所有变量视为独立或相关关系进行特征提取,不能充分提取到故障信息的特 征,造成监测效果不佳。 因此,提出一种基于变量分块的核动态潜变量-动态加权支持向量数据描述(KDLV-DWSVDD)间歇过 程故障检测算法。 首先,通过求取变量间的互信息值(MI)将变量分为相关与独立两个变量子块;然后,通过 KDLV 算法将相关 变量子块分为动态部分和静态部分,对动态部分建立向量自回归模型进行监测,对静态部分采用邻域保持嵌入(NPE)算法进行 监测;独立变量子块中自变量的动态信息可通过 DWSVDD 算法进行提取;最后, 通过 KDLV-DWSVDD 算法建立监控统计量进 行故障检测。 所提算法在青霉素发酵仿真过程中平均故障检测率可达 90. 38% ,相较对比算法提高了近 15% ,半导体实际工业 过程也证明了所提算法对于间歇过程故障检测的可行性和优越性。

    Abstract:

    In non-linear dynamic batch processes, the measured variables have different serial correlations, and the cross correlation among the variables could be reflected at different sampling moments, however, traditional detection methods do not consider the correlation among the variables, the relationships among all variables are usually regarded as independent or correlative for feature extraction, and the features of fault information are not fully extracted, so the monitoring effect is bad. Therefore, a batch process fault detection algorithm based on the kernel dynamic latent variable-dynamically weighted support vector data description (KDLV-DWSVDD) of variable blocks is proposed. Firstly, the variables are divided into related and independent variable sub-blocks through obtaining mutual information (MI) values among the variables. Then, KDLV algorithm is used to divide the related variable sub-block into a dynamic part and a static part, the vector auto-regressive model is established to monitor the dynamic part and the neighborhood preserving embedding (NPE) algorithm is used to monitor the static part. In the independent variable sub-block, DWSVDD algorithm can be used to extract the dynamic information of independent variables. Finally, the monitoring statistics are established for fault detection through KDLV-DWSVDD algorithm. The average fault detection rate of the proposed algorithm in the penicillin fermentation simulation process reaches 90. 38% , which is nearly improved by 15% compared with that of the comparison algorithms. The actual semiconductor industry process also proves the feasibility and superiority of the proposed algorithm for the fault detection of batch processes.

    参考文献
    相似文献
    引证文献
引用本文

赵小强,牟 淼.基于变量分块的 KDLV-DWSVDD 间歇过程故障检测算法研究[J].仪器仪表学报,2021,(2):244-256

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码