基于 CNN-GRU 的遥操作机器人操作者识别与自适应速度控制方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP242 TH-39

基金项目:

国家自然科学基金联合基金重点项目(U1713210)、江苏省重点研发计划项目(BE2018004- 4)、人因工程国防科技重点实验室开放基金项目(6142222200314)资助


Operator recognition and adaptive speed control method of teleoperation robot based on CNN-GRU
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统空间遥操作系统中从端机械臂的运动速度完全取决于操作者的操作速度。 为了提高空间遥操作系统的安全性,提 出了一种基于操作者操作速度识别的自适应速度控制方法。 结合深度学习的理论,提出了一种基于卷积神经网络(CNN)和门 控循环单元(GRU)神经网络的融合模型来对操作者的速度进行识别分类。 选取了九位受试者构建操作者速度样本库,将操作 者的操作速度分为 3 类,最终识别准确率达到 92. 71% ;并且在此基础上使用串级 PID 实现从端机械臂的自适应速度控制。 实 验表明:该模型对新操作者也可以准确识别,同时该模型准确性优于卷积神经网络和循环神经网络(RNN)的融合模型,实时性 优于卷积神经网络和长短期记忆(LSTM)神经网络的融合模型;基于该模型的自适应速度控制可以在保证从端机械臂运动轨迹 不变的前提下,降低机械臂的末端线速度,有助于提高空间遥操作系统的安全性。

    Abstract:

    The movement speed of the slave manipulator arm in traditional space teleoperation system completely depends on the operating speed of the operator. In order to improve the safety of the space teleoperation system, an adaptive speed control method based on the recognition of the operating speed of the operator is proposed. Combining with the theory of deep learning, a fusion model based on convolutional neural network (CNN) and gate recurrent unit (GRU) neural network is proposed to identify and classify the speed of operator. Nine subjects were selected to construct an operator speed sample library. The operating speed of the operators is divided into three categories, and the final recognition accuracy rate reaches 92. 71% . And, on this basis, the cascade PID is used to realize the adaptive speed control of the slave manipulator arm. Experiments confirm that the model can also accurately identify new operators. At the same time, the accuracy of the model is better than that of the fusion model of convolutional neural network and recurrent neural network (RNN), and the real-time performance of the model is better than that of the fusion model of convolutional neural network and long short-term memory (LSTM) neural network. Besides, the adaptive speed control based on this model can reduce the end linear speed of the manipulator arm while ensuring that the movement trajectory of the slave manipulator arm remains unchanged, which helps to improve the safety of the space teleoperation system.

    参考文献
    相似文献
    引证文献
引用本文

阳雨妍,宋爱国,沈书馨,李会军.基于 CNN-GRU 的遥操作机器人操作者识别与自适应速度控制方法[J].仪器仪表学报,2021,(3):123-131

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码