基于标签传播的涉烟车辆异常检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391 TH701

基金项目:

国家自然科学基金(61672342)项目资助


Anomaly detection of cigarette-smuggling vehicles based on label propagation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    烟草行业与政府财政收入密切关联,走私假烟不仅会造成国家税收流失,同时也会扰乱市场、危害消费者的健康,如何 对涉烟车辆实施有效的监管,对烟草行业的发展有重要意义。 针对涉烟车辆的问题,并结合实际采集的车辆数据特征,提出了 基于标签传播的涉烟车辆异常检测算法。 通过对车辆数据集进行有用特征提取,并采用随机森林算法实现特征选择,在此基础 上使用标签传播算法对异常车辆进行分类。 结果表明,在历史数据和异常车辆标签较少的情况下,基于标签传播的涉烟车辆异 常检测算法能有效的检测出大部分涉烟车辆。 在给定数据集中,算法检测出异常点的召回率为 57. 7% ,远超其他传统机器学习 模型。 该算法可为运输违禁物品车辆的侦查提供辅助支持。

    Abstract:

    The tobacco industry is closely related to government revenue. Smuggling of counterfeit cigarettes will not only cause the loss of national tax, but also disrupt the market and endanger consumers′ health. How to effectively regulate cigarette-smuggling vehicles is of great significance to the development of the tobacco industry. Aiming at the issue of cigarette-smuggling vehicles, this paper combines the actual collected vehicle data and proposes an anomaly detection algorithm based on label propagation. Firstly, the features of the vehicle data set are extracted. Second, random forest algorithm is adopted to conduct the feature selection. On this basis, label propagation algorithm is utilized to classify the anomaly vehicles. The results show that in the case of less historical data and abnormal vehicle tags, the anomaly detection algorithm of cigarette-smuggling vehicles based on label propagation can effectively detect most cigarette-smuggling vehicles. In the given dataset, the recall rate of the proposed algorithm in detecting anomaly is 57. 7% , which outperforms those of other traditional machine learning models. The algorithm can provide auxiliary support for the detection of the vehicles transporting prohibited items.

    参考文献
    相似文献
    引证文献
引用本文

王 贞,尤梓荃,张锦程,甘小莺,陶春和.基于标签传播的涉烟车辆异常检测[J].仪器仪表学报,2021,(3):161-167

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码