基于薄板样条函数的无人机多目标跟踪算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4 TH89

基金项目:

国家自然科学基金(62073052)项目资助、重庆邮电大学国际化教育研究项目(GJJY19-1-02)资助


Multi-object tracking algorithm for UAV based on the thin plate spline function
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机单机载相机运动下的多目标跟踪存在目标位置漂移和状态预测失效等问题,提出了一种基于薄板样条函数 的无人机多目标跟踪方法。 利用空间变换函数刻画无人机运动,构建无人机运动下的目标状态空间模型,利用外观特征初始化 轨迹与量测对应关系,根据初始对应关系并计算薄板样条函数的最小二乘解求解出模型未知参数,进而根据模型预测轨迹运动 状态,并结合外观进行数据关联。 此外,本文将空间变换参数引入卡尔曼滤波方程,实现了相机运动下轨迹状态的最优估计,并 通过有效的轨迹管理方法实现了轨迹初始化与终止、漏检与误检的处理。 本文所提算法与当前 3 种主流目标跟踪方法在无人 机数据集上进行了比较,实验结果表明,本文算法在所有的实验数据中均取得了最优的跟踪结果,且与现有主流算法 MDP 相 比,本文算法多目标跟踪准确率提升了 2. 75% 。

    Abstract:

    The multi-object using Unmanned aerial vehicle, UAV monocular camera under object may have problems of position drift and failure of state prediction. To address these issues, a multi-object tracking method for UAV based on the thin plate spline function is proposed, the UAV motion is formulated by the space transformation function. The state space model for UAV motion is established, and the tracklets and detection correspondence are initialized by appearance characteristics. The unknown parameters of the model are obtained by calculating the least square solution of the thin plate spline function based on the initial correspondence. Then, the tracklets motion state is predicted according to the model. And the appearance to data association is combined. In addition, the space transformation parameters are introduced into the Kalman filter equation to realize the optimal estimation of tracklets state under camera motion. The process of tracklets initialization and termination, missed detection and false detection is realized by the effective tracklets management method. Experimental results on UAV data set show that the proposed algorithm has better performance than the existing state-of-the-art algorithms. Compared with the existing mainstream algorithm MDP, the multi-object tracking accuracy of the proposed algorithm is increased by 2. 75% .

    参考文献
    相似文献
    引证文献
引用本文

余仁伟,朱 浩,蔡昌恺.基于薄板样条函数的无人机多目标跟踪算法[J].仪器仪表学报,2021,(3):168-176

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码