基于深度学习的癫痫脑电不平衡分类方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391 TH776

基金项目:

国家自然科学基金(61501283)项目资助


Imbalanced classification for epileptic EEG signals based on deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    癫痫发作自动检测技术对癫痫患者的诊断和治疗具有重要意义。 由于癫痫发作期持续时间较短,发作期与非发作期的 脑电数据分布是不平衡的。 针对该问题,本文提出了一种不平衡分类与深度学习相结合的癫痫发作自动检测方法。 首先,为防 止不同类别数据之间界限模糊,使用 Borderline-SMOTE 算法对 1 / 3 训练集做平衡处理;之后,设计了金字塔型的一维深度卷积 神经网络,并利用平衡处理的训练集进行训练。 与常见的二维卷积神经网络不同,本文构造的一维卷积神经网络减少了训练参 数,提高了训练速率,能够有效地避免由于训练样本较少而造成的过拟合。 在长达 991 小时的长程头皮脑电数据集上的实验表 明,经过平衡处理后的检测效果得到明显改善,最佳敏感度达到 92. 35% ,特异性达到 99. 88% ,阳性预测率达到 90. 68% ,阴性预 测率达到 99. 91% 。 同时,与其他癫痫检测方法的比较表明,本文方法具有更好的检测结果,更加符合临床应用的要求。

    Abstract:

    Automatic seizure detection is of great significance to the diagnosis and treatment of patients with epilepsy. Due to the short duration of epileptic seizure period, the EEG signal distribution between the seizure period and the non-seizure period is imbalanced. To solve this problem, an automatic detection method of epilepsy based on the fusion of imbalanced classification and deep learning is proposed. Firstly, the Borderline-SMOTE algorithm is applied to one-third training set to prevent the boundaries between different classes from blurring. Then, a pyramidal one-dimensional convolutional neural network is designed, which is trained with the balanced processing data. Different from the common 2D convolutional neural network, the 1D convolutional neural network reduces the number of training parameters. The training rate is improved, and the overfitting is avoided effectively which is caused by the small number of training samples. By utilizing the 991 hours long scalp EEG database, the effectiveness of the seizure detection after balanced treatment is significantly improved. The sensitivity, specificity, positive predictive value, and negative predictive value reach 92. 35% , 99. 88% , 90. 68% , and 99. 91% , respectively. Meanwhile, the comparison with other seizure detection methods shows that the proposed method has better performance. It is suitable for satisfying requirements of clinical application.

    参考文献
    相似文献
    引证文献
引用本文

费洪磊,袁 琦,郑玉叶.基于深度学习的癫痫脑电不平衡分类方法[J].仪器仪表学报,2021,(3):231-240

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码