积灰对光伏组件输出特性影响建模与分析
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH7 TM914. 4

基金项目:

国 家 重 点 研 发 计 划 ( 2018YFB1500800 )、 吉 林 省 科 技 发 展 计 划 ( 20190302079GX )、 国 家 电 网 有 限 公 司 科 技 项 目(SGTJDK00DYJS2000148)资助


Effect modeling and analysis of dust accumulation on output characteristics of photovoltaic modules
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    灰尘沉积在光伏组件上严重影响光伏系统输出的稳定性,导致发电量降低的同时缩短了组件的使用寿命。 准确地评估 光伏现场积灰浓度,将有助提升光伏发电功率预测模型的精度。 本文以光伏电站现场采集的灰尘颗粒为研究对象,首先分析了 灰尘颗粒的元素组成、含量、形貌特征和粒径分布,根据光伏组件实际的发电效率和环境参数,建立了积灰浓度软测量模型,用 于快速定量评估光伏电站积灰程度;其次,为了准确地获取模型的相关参数,开展了多组积灰浓度影响发电性能实验,得到了组 件输出功率和辐照度、积灰浓度、组件温度的关系;最后,在自然条件下,验证了模型的准确性和可靠性。 对比其他传统方法,结 果表明:本文提出的模型具有更好的预测性能,准确率可达 89. 6% 。

    Abstract:

    Dust deposition on photovoltaic (PV) modules seriously affects the stability of PV system output, resulting in the reduction of generated power and shortening the service life of the PV modules. The accurate assessment of dust accumulation concentration in the PV field will help to improve the accuracy of the power prediction model of PV power generation. In this paper, the dust particles collected in PV power station are taken as the research object. Firstly, the elemental composition, content, morphological characteristic and particle diameter distribution of the dust particles are analyzed. According to the actual power generation efficiency of PV modules and environment parameters, a soft measurement model of dust accumulation concentration is established to rapidly evaluate dust accumulation degree of PV power station. Secondly, in order to accurately obtain the relevant parameters of the model, several experiments on the influence of dust accumulation concentration on power generation performance are carried out to obtain the relationship between the output power of PV modules and irradiance, dust accumulation concentration, as well as module temperature. Finally, the accuracy and reliability of the model are verified in natural conditions. The results show that compared with other traditional methods the proposed model has better prediction performance, and the accuracy can reach 89. 6% .

    参考文献
    相似文献
    引证文献
引用本文

范思远,王 煜,曹生现,张艳辉,刘秉政.积灰对光伏组件输出特性影响建模与分析[J].仪器仪表学报,2021,(4):83-91

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码