基于深度信念网络的变频电机局部放电起始电压预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17 TM85

基金项目:

国家自然科学基金 (51977134)项目资助


Prediction of partial discharge inception voltage for inverter-fed motor based on deep belief network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    局部放电是导致变频电机匝间绝缘过早失效的主要原因,匝间绝缘局部放电起始电压(PDIV)的预测对变频电机绝缘 设计具有重要意义,因此提出一种基于深度信念网络的匝间绝缘 PDIV 预测方法。 首先建立基于汤逊理论的局部放电仿真模 型,计算不同仿真参数下匝间绝缘模型的 PDIV;其次分析匝间绝缘 PDIV 的影响因素,建立深度信念网络提取影响因素和 PDIV 之间的非线性关系;然后根据仿真分析与试验测试,验证本文所提方法的有效性;最后通过平均影响值算法探究了匝间绝缘 PDIV 的主要影响因素。 实验结果表明,该方法预测结果的最大相对误差为 5. 9% ,为变频电机匝间绝缘设计和状态评估提供了 新思路。

    Abstract:

    Partial discharge (PD) is the main cause of premature failure for the turn-to-turn insulation system in the inverter-fed motor. The prediction of PD inception voltage (PDIV) for the turn-to-turn insulation plays a significant role in the insulation design of inverterfed motors. Therefore, a PDIV prediction method for turn-to-turn insulation based on the deep belief network (DBN) is proposed in this paper. Firstly, a PD simulation model is formulated, which is based on Townsend theory. The PDIV of different simulation parameters for the turn-to-turn insulation is calculated. Secondly, the influence factors of PDIV on the turn-to-turn insulation are analyzed. The DBN is implemented to mine the non-linear relationship between the influence factors and the PDIV. Furthermore, the effectiveness of the proposed method is evaluated by simulation analysis and experiment. Finally, the principal influence factors of the turn-to-turn insulation are investigated by the mean impact value algorithm. The case study demonstrates that the max relative error of the proposed method is 5. 9% . It provides a novel idea for the condition assessment and insulation design of inverter-fed motors.

    参考文献
    相似文献
    引证文献
引用本文

李佩宜,王 鹏,张羲海,王 健,郭厚霖.基于深度信念网络的变频电机局部放电起始电压预测[J].仪器仪表学报,2021,(4):121-130

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码