基于量子粒子群与深度学习的煤矿瓦斯涌出量软测量
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH865 TD712

基金项目:

国家自然科学基金(51974151,71771111)、辽宁省高等学校国(境)外培养项目( 2019GJWZD002)、辽宁省高等学校创新团队项目(LT2019007)、辽宁省自然基金指导计划项目(20180550438)、辽宁省教育厅科技项目(LJ2019QL015)资助


Soft measurement of coal mine gas emission based on quantum-behaved particle swarm optimization and deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的绝对瓦斯涌出量软测量方法普遍未考虑瓦斯涌出量自身历史数据的前后影响,提出一种基于深度学习中长 短时记忆网络(LSTM)的瓦斯涌出量软测量模型,利用绝对瓦斯涌出量及其相关影响因素历史数据的时间序列进行预测。 考虑 到 LSTM 模型需特别注意控制学习率以防止因出现梯度问题从而影响结果,对 LSTM 单元结构做出调整,引入 softsign 函数,通 过其变化相对缓和的一阶导数以更好的解决梯度问题,使网络更快收敛且更不容易出现饱和。 针对 LSTM 中存在诸多超参数, 结合量子粒子群算法(QPSO)对其优化,使绝对瓦斯涌出量软测量结果精度最优,并利用核主成分分析对测量指标降维,加快模 型收敛速度。 对比改进后的模型与初始模型,得到改进的模型具有更高的精度和效率,均方根误差、平均绝对百分比误差和拟 合优度决定系数 3 种误差评价指标分别为 0. 080、0. 82% 和 0. 988。 将提出的模型与 ELM、PSO-SVM、PSO-BP 以及 GRU 模型对 比,可得到提出的模型误差更小,测量结果优于其他模型。 实验结果表明,提出的瓦斯涌出量软测量模型具有更好的表现。

    Abstract:

    The existing soft measurement methods of absolute gas emission generally do not consider the influence of the historical data of gas emission. To address this issue, a soft measurement model of gas emission based on the long short-term memory (LSTM) in deep learning is proposed. The time series of historical data of absolute gas emission and its related influencing factors are utilized for prediction. Due to the gradient problem, the LSTM model needs to pay special attention to control the learning rate to prevent the severe decreasing of prediction results. The LSTM cell structure is adjusted, and the softsign function is introduced to solve the gradient problem through its first derivative with relatively gentle changes. In this way, the network convergence is faster and less prone to saturation. In view of the existence of many hyperparameters in LSTM, the quantum-behaved particle swarm optimization ( QPSO) algorithm is used to optimize the soft measurement accuracy of absolute gas emission. And the kernel-principal component analysis is utilized to reduce the dimension of measurement indexes to accelerate the convergence speed of the model. Comparing the improved model with the initial model, the improved model has higher accuracy and efficiency. The root mean squared error, mean absolute percentage error and goodness of fit determinant are 0. 080, 0. 82% and 0. 988, respectively. Comparing the proposed model with ELM, PSO-SVM, PSO-BP and GRU models, the proposed model has smaller error and better measurement results than other models. Experimental results show that the proposed soft measurement model of gas emission has better performance.

    参考文献
    相似文献
    引证文献
引用本文

付 华,赵俊程,付 昱,卢万杰,徐耀松.基于量子粒子群与深度学习的煤矿瓦斯涌出量软测量[J].仪器仪表学报,2021,(4):160-168

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码