一种基于单通道 sEMG 分解与 LSTM 神经网络 相结合的手势识别方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4 TH89

基金项目:

新一代人工智能重大专项(2018AAA0103003)、国家自然科学基金深圳联合基金重点项目(U1913208)、机器人技术与系统国家重点实验室开放研究项目(SKLRS- 2019-KF-01)资助


Gesture recognition by Single-Channel sEMG Decomposition and LSTM Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在基于表面肌电(sEMG)信号的动作识别中,使用单通道传感器能够简化系统、减少识别延时,但也存在识别精度偏低 的问题。 为了提高识别精度,本文提出将单通道 sEMG 信号分解策略与长短期记忆(LSTM)循环神经网络识别相结合的方法。 在该方法中,先将单通道 sEMG 信号分解成多通道运动单元动作电位序列(MUAPTs),然后提取 MUAPTs 的特征,最后将这些 特征对 LSTM 分类模型进行训练。 为了验证该方法的有效性,本文以手势动作识别为对象,对 6 名受试者分别建立了 4 种分类 模型,包括基于未分解信号的支持向量机(SVM)、基于分解信号的 SVM、基于未分解信号的 LSTM、以及本文提出的基于分解信 号的 LSTM,并定义识别精度量化指标对这四种模型的分类结果进行评估。 对于旋前方肌 sEMG 信号,在使用本文所提方法进 行手势识别时,平均估计精度均能达到 90% 以上,比未分解的 LSTM 高 18. 7% ,比分解信号的 SVM 高 4. 17% ,比未分解信号的 SVM 高 11. 53% 。 实验结果验证了本文所提方法的有效性。

    Abstract:

    For motion recognition based on the surface electromyography ( sEMG) , reducing the channel number of sEMG electrodes could simplify the target hardware implementation, and improve the rapid response performance. However, it also has the disadvantage of coarse accuracy. In this study, we propose a sEMG recognition method by combining the single-channel sEMG decomposition and the long short-term memory (LSTM) recurrent neural networks. Firstly, the single-channel sEMG signals are decomposed into motor unit action potential trains ( MUAPTs) . Then, features are extracted from the MUAPTs, and set as inputs to train the LSTM classification model. Experiments are conducted on 6 candidates with respect to the gesture recognition scenario. Five gestures are considered as outputs of the model. Experimental results of the proposed method are extensively compared with those obtained by other three schemes, including support vector machine ( SVM) with non-decomposition data, SVM with decomposed data, and LSTM with non-decomposition data. For the sEMG of Quadratipronator, the average classification accuracy is more than 90% using the proposed method. Compared with LSTM with non-decomposition data, SVM with decomposed data, and SVM with non-decomposition data, the accuracy of the proposed method is increased by 18. 7% , 4. 17% , and 11. 53% , respectively. These results verify the efficacy of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

张 松,李江涛,别东洋,韩建达.一种基于单通道 sEMG 分解与 LSTM 神经网络 相结合的手势识别方法[J].仪器仪表学报,2021,(4):228-235

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码