基于 Keypoint RCNN 改进模型的物体抓取检测算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391 TH74

基金项目:

国家重点研发计划(2017YYF0108101)项目资助


Object grasp detection algorithm based on improved Keypoint RCNN model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机器人抓取在工业中的应用有两个难点:如何准确地检测可抓取物体,以及如何从检测出的多个物体中选择最优抓取 目标。 本文在 Keypoint RCNN 模型中引入同方差不确定性学习各损失的权重,并在特征提取器中加入注意力模块,构成了 Keypoint RCNN 改进模型。 基于改进模型提出了两阶段物体抓取检测算法,第一阶段用模型预测物体掩码和关键点,第二阶段 用掩码和关键点计算物体的抓取描述和重合度,重合度表示抓取时的碰撞程度,根据重合度可以从多个可抓取物体中选择最优 抓取目标。 对照实验证明,相较原模型,Keypoint RCNN 改进模型在目标检测、实例分割、关键点检测上的性能均有提高,在自建 数据集上的平均精度分别为 85. 15% 、79. 66% 、86. 63% ,机器人抓取实验证明抓取检测算法能够准确计算物体的抓取描述、选 择最优抓取,引导机器人无碰撞地抓取目标。

    Abstract:

    There are two difficulties in the application of robot grasping in industry. How to detect the graspable object accurately and how to select the optimized grasp target among the detected multiple objects. In this paper the homoscedastic uncertainty is introduced into Keypoint RCNN to learn the weights of various losses, the attention modules are integrated into feature extractor, which composes the improved Keypoint RCNN model. A two-stage object grasp detection algorithm is proposed based on the improved Keypoint RCNN model. In the first stage, the improved model is used to predict the masks and keypoints. In the second stage, the masks and keypoints are used to compute the grasp representation and overlap rate of the object, the overlap rate represents the level of collision while grasping. According to the overlap rate, the optimized grasp target can be selected from multiple graspable objects. Comparison experiment indicates that the performances of the improved Keypoint RCNN model are improved in object detection, instance segmentation and keypoint detection compared with those of original model, and the average precisions (AP) on the self-built dataset reach 85. 15% , 79. 66% and 86. 63% , respectively. Robot grasping experiment proves that the proposed grasp detection algorithm can accurately calculate the grasp representation, select the optimized grasp and guide the robot to grasp the target with collision-free grasp.

    参考文献
    相似文献
    引证文献
引用本文

夏浩宇,索双富,王 洋,安 琪,张妙恬.基于 Keypoint RCNN 改进模型的物体抓取检测算法[J].仪器仪表学报,2021,(4):236-246

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码