绩效保障策略下多目标维修决策优化研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

国家自然科学基金(71871220)项目资助


Research on optimization of multi-objective maintenance decision under performance-based logistics strategy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于绩效的保障作为一种新的保障策略,现已被广泛地应用在航空、国防和能源等领域。 本文针对具有两阶段退化过 程的单部件系统,在功能检测模型的基础上,将供应商的收益与可用度相关联,构建了收益率与利润率函数,并建立了基于绩效 保障的维修决策模型。 通过汽轮机叶片的算例分析对模型的有效性进行了验证,结果表明,本文采用的策略与费用最小化策略 相比利润提高了 2. 19% ,可用度上升了 0. 079% ;与可用度最大化策略相比利润提高了 26. 61% ,费用减少了 13. 35% ,证明了绩 效保障策略可以同时满足多个目标需求,以较低的费用实现利润最大化并改善系统的性能。 最后,分别对故障后维修费用和停 机时间进行了灵敏度分析,有助于最佳检测间隔期和最佳利润率的确定。

    Abstract:

    The performance-based logistics is a new support strategy, which has been widely applied in aviation, defense, energy, etc. Based on the functional check model for the single component system with two-stage failure process, this paper establishes the revenue rate and profit rate function through associating the supplier′s revenue and availability. The maintenance decision model is formulated based on the performance-based logistics. Then, the effectiveness of the model is evaluated through a numerical example of steam turbine blades. Compared with the cost minimization, results show that the profit and availability of the proposed policy are increased by 2. 19% and 0. 079% , respectively. Compared with the availability maximization, the profit is increased by 26. 61% and the cost is reduced by 13. 35% . These results prove that the proposed policy can achieve multi-objective requirements at the same time. The profit could be maximized and the system performance could be improved at a lower cost. Finally, the sensitivity analysis of maintenance cost and downtime is carried out, which is helpful to determine the optimal inspection interval and profit rate.

    参考文献
    相似文献
    引证文献
引用本文

朱 曦,胡起伟,白永生,温 亮,李 娟.绩效保障策略下多目标维修决策优化研究[J].仪器仪表学报,2021,(5):184-191

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码