基于OGA-KSVR的电能计量设备测量误差预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM933.4 TH17

基金项目:

国家电网公司总部科技项目(5230HQ19000F)、国家重点研发计划(2019YFF0216800)、湖南省研究生科研创新项目(CX20200426)资助


Measurement error prediction of power metering equipmentbased on OGA-KSVR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多应力条件下电能计量设备测量误差难以预测的问题,提出一种基于核支持向量回归(KSVR)的电能计量设备测量误差预测方法,并提出一种优化遗传算法(OGA)对核参数进行优化。首先,提出一种线性加权多核函数融合多个应力特征,利用核权值系数刻画不同应力对电能计量设备的影响。然后,在核函数参数选择阶段,为了避免对参数人工调整的局限性,提出一种交叉概率与变异概率自适应调整的优化遗传算法,并将其应用到核参数优化选择问题中。国网新疆高干热试验基地智能电表运行数据分析表明,本文所提模型具有较高的准确性,预测结果的平均均方误差为0.00018,最高拟合优度可达0.989,可以为电能计量设备在多环境应力下的健康管理提供针对策略。

    Abstract:

    Aiming at the problem that the measurement error of power metering eyuipment is difficult to predict under multi-stressconditions, a measurement error prediction method of power metering equipment is proposed based on kernel support veetor regression(KSVR),and an Optimized Genetic Algorithm(OGA) is proposed to optimize the kemel parameters. Firstly, a linear weightedmulti-kermel fumetion is prmposed to fuse multiple stress features, and the kemel weight coefficient is used to deseribe the influence ofdiferent stresses on the power metering equipment. Then, in the parameter selection stage of the kermel function, to avoid the limitationof manual parameter adjustment, an OGA with crossover probability and mutation probability adaptive adjustment is proposed and appliedto the optimization selection issue of kernel parameters. The operation data analysis of the smart electricity meters in Xinjiang High DryHeat Test Base of State Grid shows that the proposed model has high aceuraey, the average mean square error of the prediction results is 0.00018,and the highest goodness of fit can reach 0.989, which can provide a targeted strategy for the health management of powermetering equipment under multiple environmental stresscs.

    参考文献
    相似文献
    引证文献
引用本文

马 俊,滕召胜,唐 求,邱 伟,杨莹莹.基于OGA-KSVR的电能计量设备测量误差预测[J].仪器仪表学报,2021,(6):132-139

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码