基于 POD-RLS-KF 的有源相控阵天线温度场实时重构
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH701

基金项目:

国家自然科学基金(51775405,51905403)、国防基础科研项目(61404130405)、陕西省自然基金(2019JM-010)、The Research Project of State Key Laboratory of Mechanical System and Vibration (MSV202110)项目资助


Real-time reconstruction of APAA temperature field based on POD-RLS-KF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当电子设备工作时,电磁性能受温度影响很大,如何用稀疏传感器测量数据实时重构电子设备三维温度场是实现健康 监测和电磁性能控制的关键问题。 针对这一问题,以有源相控阵天线为研究对象,提出了融合仿真数据和测量数据的基于本征 正交分解-正则化最小二乘法-卡尔曼滤波(POD-RLS-KF)的温度场时空重构方法:首先利用 POD 方法将仿真瞬态温度场数据 分离为时间模式系数和空间基函数;然后根据稀疏传感器采集的数据,利用 RLS 和 KF 方法对时间模式系数进行最优估计;最 后结合空间基函数和更新后的时间模式系数实时重构温度场。 仿真和实验结果表明:在仿真工况与实际工况不同时,该方法根 据稀疏传感器提供的少量数据实时计算天线三维温度场。 对比现有重构方法,提出的方法展现出较好重构精度和噪声抑制能 力,重构温度场平均均方根误差是卡尔曼滤波-线性随机估计(KF-LSE)方法的 7. 18% ,是 Gappy 方法的 1. 53% 。

    Abstract:

    When the electronic equipment works, the electromagnetic property is greatly affected by temperature. How to reconstruct the three-dimensional temperature field of electronic equipment with sparse sensor measurement data in real time is the key problem to realize health monitoring and electromagnetic property control. Aiming at this problem, taking active phased array antenna (APAA) as the research object, a temperature field temporal spatial reconstruction method is proposed based on proper orthogonal decompositionregularized least square-Kalman filter (POD-RLS-KF), which fuses simulation data and sparse sensor measurement data. Firstly, POD is used to separate the simulated transient temperature field data into temporal mode coefficients ( TMC) and spatial basis functions ( SBF). Secondly, the data collected by sparse sensors are used to carry out the optimal estimation of the TMC in real time with RLS and KF methods. Finally, the temperature field is reconstructed in real time combining the SBF and updated TMC. The simulation and experiment results show that when the simulation state is different from the actual state, the method can calculate the three-dimensional temperature field of the antenna in real time according to a small amount of data provided by sparse sensors. Compared with existing reconstruction methods, the proposed method shows better reconstruction accuracy and noise suppression ability, and the average of the root mean square error of the reconstruction temperature field is 7. 18% of that of Kalman filter-linear stochastic estimation (KF-LSE) method and 1. 53% of that of the Gappy method.

    参考文献
    相似文献
    引证文献
引用本文

刘德荣,周金柱,王 梅,李 唐,谷振玉.基于 POD-RLS-KF 的有源相控阵天线温度场实时重构[J].仪器仪表学报,2021,(7):38-49

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码