基于特定任务肌肉协同的用户无关肌电手势识别研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4 TH77

基金项目:

国家自然科学基金(61773124)、福建省自然科学基金(2019J01544)项目资助


User-independent EMG gesture recognition based on task-specific muscle synergy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    表面肌电信号可以反映用户的动作意图,因而成为人机交互的主要控制信号。 然而,个体差异性使得用户模型不通用, 不利于发展普适性的肌电设备。 本文从神经协同控制角度出发,通过非负矩阵分解算法提取肌肉协同,并利用少量新用户预实 验数据和最小二乘法,得到与预实验协同相近的新协同作为特征量。 为了在低频可穿戴场景的应用考虑,分别在支持向量机、 误差反向传播网络、K 近邻算法这 3 个简单易移植的分类器上训练与测试。 在 Ninapro 数据库的 DB1(100 Hz)和 DB5(200 Hz) 中分别开展了 4 组手势识别实验,平均识别正确率分别为 81. 12% 、78. 19% 、74. 07% 、60. 11% (DB1) 和 85. 75% 、83. 25% 、 79. 07% 、66. 10% (DB5),比现有的低频可在线识别算法高了 10% 以上。 本文算法简单方便,利用现有用户数据和少量新用户 预实验数据即可训练分类器,并且从神经协调角度去判断意图,更有利于发展符合人体自然运动的控制方式,为可穿戴肌电设 备的普及提供了可行的方案。

    Abstract:

    The surface electromyography signal can reflect the user′s action intention. Therefore, it becomes the main control signal for human-computer interaction. However, the individual variability makes the user model universally un-applicable, which is not conducive to the development of the universal EMG equipment. In this paper, from the perspective of neural synergy control, muscle synergy is extracted by the non-negative matrix factorization algorithm. Then, the pre-experimental data of new user are combined with least squares to obtain training synergy as a feature quantity, which is similar to pre-experimental synergy. For application consideration in low-frequency wearable scenarios, three simple and easily portable classifiers ( i. e. , support vector machine, error back propagation network, and K-nearest neighbor algorithm) are trained and tested, respectively. Four sets of gesture recognition experiments are implemented in DB1 ( 100 Hz) and DB5 ( 200 Hz) of the Ninapro database. The average recognition accuracy rates are 81. 12% , 78. 19% , 74. 07% , 60. 11% ( DB1 ) and 85. 75% , 83. 25% , 79. 07% , 66. 10% ( DB5 ), which are higher than the existing low-frequency online recognition algorithms by more than 10% . The proposed algorithm is simple and easy to train the classifier using existing user data and a small amount of pre-experimental data from new users. Meanwhile, the action intention can be judged from the perspective of neural coordination, which is more conducive to the development of a control method that conforms to the natural movement of the human body. It provides a feasible solution for the popularization of wearable electromyography equipment.

    参考文献
    相似文献
    引证文献
引用本文

郑 楠,李玉榕,张文萱,李吉祥.基于特定任务肌肉协同的用户无关肌电手势识别研究[J].仪器仪表学报,2021,(9):253-261

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码