模型参数对卷积神经网络电容层析成像图像重建的影响
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TK313 TH816

基金项目:

国家自然科学基金 ( 52006036)、 江苏省自然科学基金 ( BK20190366)、 航天低温推进剂技术国家重点实验室开放课题(SKLTSCP1908)、中央高校基本科研业务费专项资金(3203002101C3)资助


Effects of model parameters on image reconstruction of convolutional neural network electrical capacitance tomography
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    卷积神经网络凭借其较强的非线性拟合能力,在电容层析成像图像重建中逐渐得到应用。 本文针对卷积神经网络模型 超参数调节问题,研究了模型参数对卷积神经网络电容层析成像图像重建的影响。 首先,通过数值方法构建了包含 80 000 组 随机流型与 40 000 组典型流型的“电容矩阵-介质分布”数据集;然后,通过该数据集中的训练集对不同超参数的卷积神经网络 模型进行训练和验证,并系统研究了网络初始化、网格密度、卷积核数、全连接层神经元数以及隐藏层结构等超参数对图像重建 精度的影响;接着,利用额外生成的 12 000 组数据作为测试集对各网络模型性能进行评价;最后通过静态实验,对不同网络模 型的图像重建效果进行了比较和分析。 结果表明:网络隐藏层结构对图像重建精度影响较大,而网络初始化、网格密度、卷积核 数以及全连接层神经元数等超参数对重建精度影响较小。

    Abstract:

    Convolutional neural network ( CNN) is applied in the image reconstruction of electrical capacitance tomography ( ECT) gradually due to its strong nonlinear fitting ability. Aiming at the hyperparameter regulation problem of CNN model, this paper investigates the effects of the model parameters on the image reconstruction results of ECT. Firstly, a dataset of “ capacitance matrixparticle concentration distribution” with 80 000 random flow patterns and 40 000 typical flow patterns is established with numerical method, then the CNN models with various hyperparameters are trained and validation through the training set in the dataset. The effects of the network hyperparameters, including the network initialization, grid density, number of the convolution kernels, number of the neurons in the fully connected layer and the structure of the hidden layers, on the image reconstruction accuracy are systematically studied. Further, a test dataset composed of 12 000 extra generated flow patterns is utilized to evaluate the performance of the CNN models. Static experiments were performed to compare and analyze the image reconstruction quality with various CNN models. Results demonstrate that the structure of network hidden layers has a relatively great effect on the image reconstruction accuracy, while the network initialization, grid density, number of the convolution kernels, number of the neurons in the fully connected layers have less effect on image reconstruction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

汤 政,雷 刚,王天祥,李 健,许传龙.模型参数对卷积神经网络电容层析成像图像重建的影响[J].仪器仪表学报,2021,(10):71-82

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码