全局注意力关系网络的小样本船舶识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH89 TP391. 4

基金项目:

船舶态势智能感知系统研制(MC-201920-X01)项目资助


Few shot ship recognition based on universal attention relationnet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    实际场景中采集的船舶目标类别样本数量不均衡,模型训练易导致过拟合。 传统迁移学习的数据集划分存在类别交 叉,造成未标注新类别识别精度低。 为解决上述问题,提出了一种跨目标通用全局注意力机制与关系度量网络融合的小样本船 舶识别算法。 该方法通过在关系网络中引入全局注意力机制,利用关系网络提取到的原始特征,经过全局注意力机制平滑不均 衡类别间的目标特征,并与关系网络提取的原始特征融合后进行特征距离度量。 该方法增强了全局特征之间的一致性,有利于 学习不变的目标特征,提升少样本少标签的船舶目标识别性能,解决了训练过程中类别不均衡导致的过拟合问题。 利用自己采 集制作的船舶数据集对本文方法进行测试实验,识别精度提高了 5. 6% (5-shot)、3. 2% (1-shot),减小了不均衡类别对模型目标 识别造成的影响,增强了模型的鲁棒性。

    Abstract:

    The sample number of ship target categories collected in actual scenes is not balanced, and the model training easily leads to be overfitting. The data set of the traditional transfer learning is divided into categories, which results in low recognition accuracy of unlabeled new categories. To solve the above problems, a small sample ship identification algorithm based on the fusion of the crosstarget universal global attention mechanism and the relationship measurement network is proposed. This method introduces the universal attention mechanism into the relation network, uses the original features extracted by relation network, and smooths the target features between imbalanced categories through the universal attention mechanism, and compares them with the original features extracted by the relation network. After feature fusion, feature distance measurement is performed. This method enhances the consistency among universal features, which is conducive to learning invariant target features and improve the performance of ship recognition with few samples and few labels. In this way, the overfitting problem caused by imbalance of categories in the training process could be solved. Using the ship data set collected and produced by ourselves to test the proposed method, the recognition accuracy is improved 5. 6% (5- shot) and 3. 2% (1-shot). The impact of imbalanced category on the model ship recognition is reduced, and the robust of the model is enhanced.

    参考文献
    相似文献
    引证文献
引用本文

孟 浩,田 洋,孙宇婷,李 涛.全局注意力关系网络的小样本船舶识别[J].仪器仪表学报,2021,(12):220-227

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码