基于粒子群解耦算法的 FBG 流量温度复合传感研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH814

基金项目:

重庆市教委科学技术研究计划重点项目(KJZDK202002401)、重庆市普通本科高校新型二级学院建设项目(渝教高[2018]22号)、上海市轨道交通结构耐久与系统安全重点实验室开放基金(202004)、成渝地区双城经济圈建设科技创新项目(KJCK2020032)资助


Research on FBG flow and temperature composite sensor based on the PSO decoupling algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对光纤布拉格光栅流量温度复合传感解耦困难的问题,提出了一种基于粒子群解耦算法的光纤布拉格光栅流量温度 复合传感器。 首先,结合光纤布拉格光栅传感理论和流量温度复合传感理论,研究了基于光纤布拉格光栅的流量温度复合传感 机理。 然后,设计了悬臂梁为空心圆柱的一体靶式结构的光纤布拉格光栅流量温度复合传感器,搭建了流量温度实验系统平 台,进行了温度和流量复合传感实验。 最后,提出了一种基于粒子群算法的 FBG 流量温度复合传感解耦方法,并运用所设计的 粒子群算法对实验数据进行流量与温度解耦研究。 研究结果表明,解耦后传感器在 3 ~ 8 m 3 / h 的范围内其流量最大误差为 0. 014 m 3 / h,温度最大误差为 0. 021℃ ,流量测量误差为 0. 28% ,温度测量误差为 1. 5% ,流量均方误差为 1. 16×10 -4 m 3 / h,温度 均方误差为 1. 53×10 -4℃ ,与神经网络算法进行性能比较后,结果表明所采用的粒子群算法解耦效果良好,有效地提高了传感器 的测量精度。

    Abstract:

    The decoupling in the fiber Bragg grating flow and temperature composite sensing is a difficult problem. To address this issue, a fiber Bragg grating flow and temperature composite sensor based on particle swarm decoupling algorithm is proposed. Firstly, combining the fiber Bragg grating sensing theory and the flow and temperature composite sensing theory, the flow and temperature composite sensing mechanism based on the fiber Bragg grating is studied. Then, a fiber Bragg grating flow and temperature composite sensor that integrate target structure with the cantilever beam of hollow cylinder is designed, a flow and temperature experiment system platform is established. The temperature and flow composite sensing experiments are carried out. Finally, a FBG flow and temperature composite sensor decoupling method based on the particle swarm algorithm is proposed. The proposed particle swarm optimization algorithm is used to decouple the experimental data from the flow and temperature. Research results after decoupling show that the maximum flow error of the sensor in the range of 3~ 8 m 3 / h is 0. 014 m 3 / h, the maximum temperature error is 0. 021℃ , the flow measurement error is 0. 28% , the temperature measurement error is 1. 5% , the flow mean-square error is 1. 16×10 -4 m 3 / h, and the temperature mean-square error is 1. 53 × 10 -4℃ . Compared with the neural network algorithm, results show that the particle swarm optimization algorithm has a good decoupling effectiveness. The measurement accuracy of the sensor could be improved effectively.

    参考文献
    相似文献
    引证文献
引用本文

孙世政,向 洋,党晓圆,张 辉,何盛港.基于粒子群解耦算法的 FBG 流量温度复合传感研究[J].仪器仪表学报,2022,43(1):2-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码