基于多模态步行意图识别的助行机器人柔顺控制
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911. 72 TH711 TH9

基金项目:

中央引导地方科技发展项目(2021JH6/10500216)、辽宁省自然科学基金(2021BS152)、辽宁省教育厅面上项目(LJKZ0124)资助


Compliance control of walking aid robots based on multimodal walking intention recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在辅助行走或步行康复训练过程中,助行机器人在紧密跟随人体步态的基础上,准确识别异常行为是人机交互的重要 研究内容。 为此,提出一种兼具通用性、鲁棒性与便捷性的非接触式多模态步行意图识别方法,能够准确识别多种步态并柔顺 地控制机器人运行。 首先,分析了步行辅助机器人和步行康复训练机器人的结构、功能与运动学模型,建立了内嵌式机载步态 信息检测系统,从而准确描述步态变化规律;其次,为有效解决标志点丢失问题,提出了一种新型的扩展集员滤波算法来精确估 计膝关节角度;最后,通过引入用户步态信息,建立了一种基于步态补偿的柔性控制方法并进行了实验研究。 实验表明,提出的 算法能够在有效克服标记点丢失的情况下,准确识别交互过程中的正常步态,并柔顺地控制机器人运动,同时对跌倒和拖拽步 态进行有效识别,识别率分别达到 91. 3% 和 89. 3% 。 该非接触式步态意图识别方法可以应用于具有类似结构的助行器及其日 常助行与康复训练场景。

    Abstract:

    During the process of assisted walking or gait rehabilitation training, it is essential to recognize abnormal behaviors accurately in human-computer interaction on the basis of following user′s gait closely. This article proposes a non-contact recognition method which has advantages of universality, robustness, and convenience for multimodal walking intention. It can control the robot flexibly and accurately recognize various gaits. Firstly, the structure, functions, and kinematics models of the walking assist robot and the gait rehabilitation training robot are introduced, and an embedded airborne gait recognition system is established. It can accurately describe the gait and changing rule. Secondly, to effectively solve the problem of mark point loss, a new extended set membership filter is proposed to estimate the knee angle. Finally, a compliance control method based on walking speed compensation is established by combining with gait information. Experimental results show that the proposed method could effectively overcome the loss of marker points, identify the normal gait accurately in the interaction process, and flexibly control the robot movement. Meanwhile, it can effectively recognize the falling and drag-to-drop gait. The recognition rates are 91. 3% and 89. 3% , respectively. The non-contact walking intention recognition method can be applied to walkers with similar structures and their daily walking assistance or rehabilitation training

    参考文献
    相似文献
    引证文献
引用本文

赵东辉,王 威,张紫涵,杨子豪,杨俊友.基于多模态步行意图识别的助行机器人柔顺控制[J].仪器仪表学报,2022,43(2):205-215

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码