失效物理与数据驱动融合的燃油泵在线寿命预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP277 TH35

基金项目:

十三五”预研专用技术项目(30305072)资助


Online life prediction of the fuel pump based on failure physics and data-driven fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对机载燃油泵性能退化过程呈现的多阶段、非线性的特点以及对寿命预测实时性的要求,提出了一种基于失效物理 与数据驱动融合的燃油泵在线退化建模与寿命预测方法。 通过开关卡尔曼滤波器对燃油泵退化阶段进行在线识别,并对快速 退化阶段建立失效物理与数据驱动融合的退化模型,然后基于无迹卡尔曼滤波器对建立的退化模型不断进行模型参数更新,并 使用更新后的模型对失效寿命进行预测。 将所提方法分别与纯数据驱动的方法、不进行退化阶段识别以及不进行参数更新的 融合方法进行比较,整个参数更新过程中其均方根误差不超过 0. 3,寿命预测百分比误差不超过 2% ,均小于对比方法,验证了 本文方法的有效性与优越性。

    Abstract:

    The performance degradation process of the airborne fuel pump has of multi-stage and nonlinear characteristics, which requires real-time life prediction. To address these issues, an online degradation model and a life prediction method based on failure physics and data driven are proposed. The fuel pump degradation stage is identified online by the switching Kalman filter, the degradation model of rapid degradation stage is formulated based on failure physics and data-driven method, the model parameters are continuously updated based on the unscented Kalman filter, and the failure life is predicted by using the updated model. The proposed method is compared with the data-driven method, the fusion method without degradation stage identification or parameters update. The root mean square value is less than 0. 3 during the whole parameter update process, and the percentage error of lifetime prediction is less than 2% , which are smaller than the values of the compared method. The effectiveness and superiority of the proposed method are verified.

    参考文献
    相似文献
    引证文献
引用本文

景 博,崔展博,孙宏达,焦晓璇,章 余.失效物理与数据驱动融合的燃油泵在线寿命预测[J].仪器仪表学报,2022,43(3):68-76

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码