有限变工况特征迁移学习方法及其在高速列车轴箱 轴承故障诊断中的应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17 TP206

基金项目:

国家自然科学基金(52175077)项目资助


A transfer learning method for bearing fault diagnosis under finite variable working conditions and its application in train axle-box bearings fault diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以高速列车轴箱轴承为研究对象,提出了一种适用于有限数量变工况下的轴承故障诊断方法。 该方法以有监督的学习 模式构造自编码器,将不同工况下特征值集向参考工况下特征集做映射迁移,从而减弱由工况变化引起的轴承故障特征值改变 的影响。 再将迁移后的特征集输入由参考工况特征集预训练的基于卷积神经网络的故障诊断模型,实现变工况下轴承故障的 诊断。 凯斯西储大学轴承公开数据集和高速列车轴箱轴承数据集的试验结果表明,经监督式自编码器特征迁移后的轴承故障 识别准确率有了较大提升,该方法能够较好的实现有限工况下的特征序列的迁移,解决工况变化带来的故障特征的畸变问题。 关键词: 轴箱轴承;监督式自编码器;变工况特征迁移;卷积神经网络;故障诊断

    Abstract:

    This article takes the high-speed train axle box bearing as the research object. A bearing fault diagnosis method is proposed to deal with finite variable working conditions, which is based on the supervised auto encoder feature representation transfer. The feature sequences of different working conditions are mapped to the reference condition feature sequences. In this way, the influence of condition change on bearing fault feature is decreased. The migrated features are inputted into the fault diagnosis model based on the convolution neural network, which is pre-trained by the reference condition training feature sets. Then, the axle box bearing fault diagnosis is achieved under variable working conditions. The open bearing data of Case Western Reserve University and the high-speed axle box bearing data are utilized. Experimental results show that the accuracy of fault identification has been greatly improved after feature migration. The method can achieve the feature migration under different working conditions and reduce the distortion of fault features caused by the change of working conditions.

    参考文献
    相似文献
    引证文献
引用本文

罗宏林,柏 林,侯东明,彭 畅.有限变工况特征迁移学习方法及其在高速列车轴箱 轴承故障诊断中的应用[J].仪器仪表学报,2022,43(3):132-145

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码