融合 WiFi 与可穿戴惯导模块的室内定位方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN98 TH89

基金项目:

浙江省自然科学基金项目(LZ21F020005)资助


An indoor positioning method integrating WiFi and wearable inertial navigation module
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决基于智能手机的人员室内定位追踪易受手机姿态影响的问题,提出一种融合 WiFi 与可穿戴惯导模块的室内定 位方法。 通过固定在胸部的惯性测量单元实现行人航迹推算 PDR)定位,消除手机姿态对 PDR 定位的影响,采用加权贝叶斯算 法实现 WiFi 指纹定位,为 PDR 提供初始定位,同时基于无迹卡尔曼滤波融合 WiFi 定位结果与 PDR 定位结果,以减少 PDR 的 累积定位误差。 最后,在真实室内环境中进行大量实验,实验结果证明本文提出的加权贝叶斯 WiFi 定位算法相比于传统贝叶 斯算法定位误差降低了 51. 9% ,提出的融合 WiFi 与可穿戴惯导模块的定位方法具有更好的精度和稳定性,相比于纯 PDR 定位 算法平均定位误差降低了 65. 2% ,相比于完全利用手机实现的融合算法,在 3 种不同手机姿态下平均定位误差分别下降了 12. 3% 、39. 3% 和 48. 4% 。

    Abstract:

    The smart-phone-based personnel indoor positioning is fragile to the phone attitude. To address this issue, an indoor positioning method integrating WiFi and the wearable inertial navigation module is proposed. The pedestrian dead reckoning (PDR) positioning is achieved by leveraging the wearable inertial navigation module fixed to the chest. And the influence from the smartphone attitude is avoided. WiFi fingerprint positioning is also adopted by using the proposed weighted Bayesian algorithm, which provides the initial position for PDR positioning. Meanwhile, the WiFi positioning are continuously fused with PDR positioning under the framework of the unscented Kalman filter to reduce the cumulative positioning error of pure PDR positioning. Finally, a large number of experiments are implemented in the real indoor environment. Compared with the traditional Bayesian algorithm, experimental results show that the positioning error achieved by the proposed weighted Bayesian WiFi positioning algorithm is reduced by 51. 9% . The proposed positioning method integrating WiFi and the wearable inertial navigation module has better accuracy and stability. Compared with the pure PDR positioning algorithm, the average positioning error is reduced by 65. 2% . Furthermore, compared with implementing the same algorithm on the smart phone, the average positioning errors under three different phone attitudes are reduced by 12. 3% , 39. 3% and 48. 4% , respectively.

    参考文献
    相似文献
    引证文献
引用本文

罗 日,李燕君,金志昂,陈博文.融合 WiFi 与可穿戴惯导模块的室内定位方法[J].仪器仪表学报,2022,43(3):267-276

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码