基于因子图的 INS / UWB 室内行人紧组合定位技术
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH89

基金项目:

国家自然科学基金(51979047)、黑龙江省自然科学基金(YQ2021E011)、中央高校基本科研业务费学科交叉专项基金(3072021CFT0403)项目资助


INS / UWB tight integrated localization technology for pedestrian indoor based on factor graph
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对室内复杂应用场景下待定位行人接收到的超宽带(UWB)测距信息数量不确定问题,提出一种基于因子图的 INS / UWB 室内行人紧组合定位算法,实现对动态随遇接入与退出的 UWB 量测信息有效融合。 首先,基于室内行人运动模型以及 UWB 量测模型构建 INS / UWB 紧组合因子图模型,由于对行人位置与速度同时进行建模估计,导致该因子图模型含有环结构。 在此基础上,针对有环因子图模型基于和积算法(SPA)通过两次迭代推导因子图中各节点间消息传递算法,计算行人位置与速 度的后验概率密度。 进一步,针对特殊量测矢量条件下因子图算法定位误差跳变问题,提出一种基于坐标变换的因子图改进方 法,从而有效提高行人位置与速度估计精度。 仿真结果表明,本文提出的 INS / UWB 紧组合定位算法可以有效融合动态随遇接 入与退出的 UWB 测距信息。 在满足计算量与内存消耗需求的前提下,与变结构多模型扩展卡尔曼滤波(EKF)相比,本文提出 算法的定位精度与速度估计精度可以分别提高 14. 94% 与 56. 42% 。

    Abstract:

    The number of ( ultra-wide band) UWB ranging measurements received by pedestrians to be located in the complex indoor scene is uncertain. To address this issue, the INS / UWB tight integrated localization algorithm based on a factor graph is proposed. It can be used to fuse UWB ranging measurement from random accessing node and exiting node. Firstly, an INS / UWB tightly integrated factor graph model is constructed, which is based on the pedestrian motion model and the UWB measurement model. Due to the simultaneous modeling of pedestrian position and velocity, there are cycles in the factor graph model. Aiming at the factor graph model with cycles, the sum-product algorithm (SPA) is used to derive the message passing algorithm among different nodes in the factor graph model through two iterations, and the posterior probability density of pedestrian position and velocity is calculated. Furthermore, given the rapid enlarging error deduced by a special ranging measurement vector in the INS / UWB tight integrated localization algorithm, an improved factor graph algorithm based on coordinate transformation is proposed. Simulation results show that the proposed INS / UWB tightly integrated localization algorithm can effectively fuse dynamic UWB ranging measurements in complex indoor scenes. On the premise of meeting the demand of computation and memory consumption, the proposed algorithm can improve positioning accuracy and speed estimation accuracy by 14. 94% and 56. 42% , respectively, compared with the extended Kalman filter ( EKF) algorithm with multi-models.

    参考文献
    相似文献
    引证文献
引用本文

李 倩,蒋正华,孙 炎,奔粤阳.基于因子图的 INS / UWB 室内行人紧组合定位技术[J].仪器仪表学报,2022,43(5):32-45

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码