基于时空相似性的即时学习在线建模
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH86 TP274

基金项目:

上海市自然科学基金面上项目(19ZR1402300)、中央高校基本科研业务费专项资助


Online modeling of just-in-time learning based on spatial-temporal similarity
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    流程工业数据具有较大的时变性以及非线性,传统的离线模型难以应对实际生产过程中的工况变化,而即时学习是在 线建模的有效方法。 已有研究对即时学习的相似度度量方法大多只侧重于样本的空间距离,忽略了工业数据时序性的特点。 为此,提出基于时空相似性的即时学习建模方法。 首先,将样本点延拓成样本序列,结合动态时间规整计算样本间的时序距离。 其次,提出时空相似性度量准则,通过对时序距离和空间距离进行非线性加权,构建时空相似性度量指标。 最后,提出基于时空 相似性的即时学习在线建模方法。 将所提算法应用于公共数据集及聚酯纤维聚合过程,拟合优度分别达到了 91. 6% 和 98. 6% , 实验结果验证了算法的有效性和优越性。

    Abstract:

    Data in the process industry are highly time-varying and nonlinear. Traditional offline models can hardly cope with the changing working conditions in the actual production process, while the just-in-time learning ( JITL) is an effective online modeling method. Most of the studied similarity measurements of JITL only focus on samples’ spatial distance, which ignore the time-series characteristics of industrial data. To address this issue, a JITL method based on spatial-temporal similarity is proposed. First, the sample point is extended into a sample sequence, and the temporal-sequence distance among samples is calculated by combining dynamic time warping. Then, the spatial-temporal similarity metric (SSM) is proposed, and the SSM is constructed by nonlinearly weighting the temporal and spatial distances. Finally, the online modeling method for just-in-time learning based on spatial-temporal similarity ( SSJITL) is proposed. The algorithm is applied to a public dataset and an actual polyester fiber polymerization process. Experiment results show that the goodness of fit reaches 91. 6% and 98. 6% , which demonstrates the effectiveness and superiority of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

施锦涛,陈 磊,秦 凯,李振兴,郝矿荣.基于时空相似性的即时学习在线建模[J].仪器仪表学报,2022,43(6):185-193

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码