油液磨粒感应电压特征辨识研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP212 TP206 TH117

基金项目:

国家自然科学基金(51705057)项目资助


Study on feature identification of oil debris induced voltages
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确监测滑油液中磨损微粒的大小和分布信息是评估机械设备服役状态和预测剩余生命的重要手段。 然而在实际应 用中,感应式磨粒检测传感器输出信号常常伴随着各种噪声和干扰,导致微弱的磨粒信号特征难以准确辨识。 为此,本文提出 了一种自适应感应电压特征辨识方法。 首先对检测信号进行多尺度滤波,利用多组不同截止频率滤波结果之间的稳定性进行 目标信号的定位和分割。 然后,根据信号的数学模型提取数值特征并进行感应电压辨识,从而实现磨损微粒的精确计数和特征 分析。 实验结果表明,新方法能较为完整地保留磨粒信号的形态特征,并成功提取出直径 70 μm 磨损颗粒所产生的感应电压 信号,对传感器检测精度的提高以及磨损状态准确评估提供了基础。

    Abstract:

    The accurate sensing of the size and distribution of wear debris in lubricating oil is an important method for evaluating service condition and remaining using life prediction of mechanical equipment. However, in practical application, the output of inductive debris detection sensor is often contaminated by a variety of noise and interference, which makes a challenge to identify the characteristics of debris signals. Therefore, an adaptive method for induced voltage feature identification is proposed in this article. Firstly, the detection signal is multi-filtered by low-pass filter with different cut-off frequencies. Based on the significant difference between multidimensional filtered data, the target signals are located and segmented. Finally, according to the established mathematical model, the signal numerical features are extracted to realize the identification, counting, as well as quantitative analysis of wear debris. Experimental results show that the proposed strategy successfully extract the induced voltage generated by a 70 μm ferromagnetic debris with little distortion of morphological characteristics, which provides a basis for improving the detection performance of the sensor and accurately evaluating the wear state.

    参考文献
    相似文献
    引证文献
引用本文

罗久飞,郑 睿,王鑫宇,陈 平,冯 松.油液磨粒感应电压特征辨识研究[J].仪器仪表学报,2022,43(8):173-181

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码