基于灰狼优化的埋地管道泄漏双波谱定位方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911. 7 TH86

基金项目:

十三五国家重点研发计划(2018YFF0301000)项目资助


Grey wolf optimization based buried pipe leak localization using dual-wave spectrum
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现对埋地输气管道泄漏的高效准确定位,提出基于灰狼优化和双波谱估计的泄漏振动声源三维定位方法。 该方法 根据地面加速度传感器阵列的 P1 波、S 波混合信号模型构建双波谱函数,利用双波谱峰叠加特性进行双波速度匹配搜索以实 现波速估计,再将波速估计结果代入三维空间谱函数中进行泄漏三维定位。 将三维空间谱函数作为适应度函数,使用灰狼优化 算法代替三维空间谱网格搜索,实现对双波速度匹配和三维定位过程的优化。 实验证明,该方法可实现对泄漏振动声波在土介 质中的传播速度以及地下泄漏源位置的准确估计;与传统三维空间谱搜索方法相比,定位精度提高 25. 85% ,三维空间谱搜索耗 时减少 99. 95% 。

    Abstract:

    To efficiently and accurately locate the buried gas pipe leaks, a three-dimensional ( 3D) localization method for the leakinduced vibroacoustic source based on the grey wolf optimization (GWO) and the dual-wave spectrum estimation 3D is presented. A dual-wave spectral function is formulated by using the mixed signal model of P1 and S waves detected by a ground-mounted accelerometer array. The velocity is estimated by using the dual-wave velocity pairing based on the superimposing characteristic of dual-wave peaks. Then, the estimated velocity is substituted into a 3D spectral function to perform 3D localization. Considering the 3D spectral function as a fitness function, the procedures of dual-wave velocity pairing and 3D localization are optimized by using the GWO algorithm to replace the grid search for 3D spectra. Experimental results show that the presented method can accurately estimate the velocity at which the leak-induced vibroacoustic wave propagates along the soil, and thereby locating the underground leak. Compared with the conventional method using 3D spectrum search, the localization accuracy of the presented method is increased by 25. 85% , and the search time for 3D spectra is decreased by 99. 95% .

    参考文献
    相似文献
    引证文献
引用本文

郑晓亮,谢晓贤,王 强.基于灰狼优化的埋地管道泄漏双波谱定位方法[J].仪器仪表学报,2022,43(8):204-214

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码