小样本下自校正卷积神经网络的 滚动轴承故障识别方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165 + . 3

基金项目:

国家自然科学基金(51465035)、甘肃省自然科学基金(20JR5RA466)项目资助


Fault identification for rolling bearing by self-calibrated convolutional neural network under small samples conditions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对实际工程中因故障样本数据稀少而导致模型识别准确率不高的问题,提出了一种基于自校正卷积神经网络( SCCNN)的滚动轴承故障诊断模型,并将其应用于小样本条件下的故障识别研究。 首先,为减少不同信号的数据分布差异,在每个 卷积层后添加 BN 算法;其次,利用自校正卷积学习信号的多尺度特征,提高模型获取有用故障特征的能力;然后,引入通道自 注意力机制,建立通道特征信息之间的相关性,用于突出故障特征并抑制数据过拟合;再将少量训练样本输入到模型中进行学 习;最后,将各类不同条件下的故障信号输入到训练好的 SC-CNN 模型进行识别分类,并在两个数据集上进行实验验证。 结果 表明,所提模型在信噪比为-4 dB 的强噪声环境下,识别准确率分别为 98. 64% 和 99. 83% ,在变工况条件下,识别准确率分别为 94. 37% 和 99. 64% ,验证了 SC-CNN 模型在小样本条件下具有较强的鲁棒性和泛化性能。

    Abstract:

    The model recognition accuracy is low due to the scarcity of fault sample data in practical engineering. To address this issue, a rolling bearing fault diagnosis model based on the self-calibrated convolutional neural network ( SC-CNN) is proposed and applied to fault identification under the condition of small samples. Firstly, the BN algorithm is added after each convolutional layer to reduce the data distribution difference of different signals. Secondly, the self-calibrated convolution is adopted to learn the multi-scale features of the signal to improve the ability of the model to obtain useful fault features. Then, the channel self-attention mechanism is introduced to establish the correlation between channel feature information to highlight the fault features and suppress data overfitting. Further, a small number of training samples are fed into the model for learning. Finally, the fault signals under various conditions are taken as the input of the trained SC-CNN model for identification and classification. Evaluation experiments are implemented on two datasets. Results show that the recognition accuracy values of the proposed model are 98. 64% and 99. 83% under strong noise environment with SNR of -4 dB. Those two values are 94. 37% and 99. 64% under variable working conditions. Results show that the SC-CNN model has strong robustness and generalization performance under small sample condition.

    参考文献
    相似文献
    引证文献
引用本文

雷春丽,夏奔锋,薛林林,焦孟萱,史佳硕.小样本下自校正卷积神经网络的 滚动轴承故障识别方法[J].仪器仪表学报,2022,43(9):122-130

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码