基于 LAM-Net 的轨道侵入界异物自主检测系统
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U491. 2 TH39

基金项目:

煤炭资源高效开采与洁净利用国家重点实验室开放基金(2021CMCUKF012)、中央高校基本科研业务费专项基金(2022YQJD04,2022YJSJD01)项目资助


Research on the autonomous detection system for railway intrusion obstacles based on LAM-Net
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对轨道入侵异物对行车安全造成的极大威胁,而现有的轨道目标检测算法难以平衡检测精度和速度、易受复杂环境 影响以及难以部署于嵌入式设备等问题,提出了一种轻量型自适应多尺度卷积神经网络,其通过特征图线性变换简化特征提取 过程,使用自适应多尺度特征融合优化特征表达能力,并通过设计轻量型注意力进一步提升异物检测精度;同时,结合 NVIDIA Jetson TX2 嵌入式平台,研制了轨道入侵异物自主检测系统。 实验结果表明,本文提出的模型很好地平衡了检测速度和精度, 在 NVIDIA GeForce GTX1080Ti 的 GPU 平台上对轨道数据集的检测速度为 297 FPS,检测精度为 92. 96% ,比 YOLOv4-tiny 高 7. 72% ,实现了在轨道交通复杂场景下高精度、高速度以及高鲁棒性的检测入侵异物。

    Abstract:

    The railway obstacles in front of the train have great threat to traffic safety. The existing railway object detection algorithms are difficult to balance the detection accuracy and speed, which are susceptible to complex environment and difficult to deploy in embedded equipment. To address these issues, the lightweight and adaptive multiscale convolutional neural network is proposed in this article. The model simplifies the computation of redundant feature maps in feature extraction process by means of feature map linear transformation, and the adaptive multi-scale feature fusion is used to optimize the ability and further improve the accuracy of foreign obstacles detection. In addition, combined with NVIDIA Jetson TX2, an autonomous intrusion detection system for railway traffic scenes is developed. Experimental results show that the proposed model performs a great compromise between detection speed and accuracy. The detection speed of LAM-NET on the NVIDIA GeForce GTX1080Ti is 297 FPS, and the detection accuracy is 92. 96% (7. 72% higher than that of YOLOv4-tiny), which can well realize the high precision, real-time and high robustness detection for railway obstacles.

    参考文献
    相似文献
    引证文献
引用本文

叶 涛,赵宗扬,郑志康.基于 LAM-Net 的轨道侵入界异物自主检测系统[J].仪器仪表学报,2022,43(9):206-218

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码