车载 LiDAR-IMU 外参联合标定算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH86

基金项目:

中央高校基本科研业务费(3072022QBZ0401)项目资助


Vehicle-mounted LiDAR-IMU external parameter joint calibration algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高 LIO-SAM 算法的定位精度,本文从 LiDAR-IMU 外参标定方面开展研究,针对现有的传感器标定算法在车载条件下 标定精度低的缺点,提出一种新的车载传感器联合标定算法。 针对车载条件下自由度低导致俯仰、横滚方向约束建立不充分的问 题,利用车辆的大范围运动轨迹消除平移参数影响,使用正态分布变换(NDT)和迭代最近点(ICP)的点云匹配算法快速得到旋转 参数初值,提高俯仰角和横滚角的标定精度。 针对粗标定过程中激光里程计存在漂移以及没有标定平移外参的问题,对基于点云 优化的全参数标定方案进行改进,利用转弯区域构建对平移外参的约束,结合统计误差平均效应和位移约束构建新的目标函数, 迭代优化后得到全参数标定结果。 实验结果表明,加入了外参标定模块的 LIO-SAM 算法的定位精度提升了 1. 74% ~5. 92% 。

    Abstract:

    To improve the localization accuracy of the LIO-SAM algorithm, the LiDAR-IMU external parameter calibration is studied in this article. To address the low calibration accuracy of existing sensor calibration algorithms in vehicle-mounted conditions, a new joint calibration algorithm is proposed for vehicle sensors. Due to the low degree of freedom under vehicle conditions, the constraints of pitch and roll direction are not established sufficiently. To solve this problem, we first eliminate the influence of translation parameters by using a wide range of vehicle trajectories. Then, the normal distributions transform and iterative closest point algorithm are used to quickly obtain the initial values of rotation parameters. Furthermore, the calibration accuracy of pitch angle and roll angle is improved. In the coarse calibration process, the LiDAR odometer drifts and translation external parameters are not calibrated. Therefore, we further implement the full parameter calibration scheme based on the point cloud optimization method and make some enhancements. In this scheme, the turning region is utilized to construct constraints on the translation external parameters. Then, we combine the statistical error average effect and the displacement constraint to construct a new objective function. Finally, the full parameter calibration results are obtained by iterative optimization. Compared with the original LIO-SAM algorithm, experimental results show that the localization accuracy of LIO-SAM algorithm with external parameter calibration module is improved by 1. 74% ~ 5. 92% .

    参考文献
    相似文献
    引证文献
引用本文

黄 平,胡 超,张 宁,薛 冰.车载 LiDAR-IMU 外参联合标定算法[J].仪器仪表学报,2022,43(10):128-135

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-06
  • 出版日期:
文章二维码