接触式交互感知的人体三维坐姿姿态估计
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391 TH701

基金项目:

国家自然科学基金(62175223)项目资助


Human 3D sitting pose estimation based on contact interaction perception
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对视觉姿态估计方法受覆盖遮挡等干扰,提出一种基于座椅面压力图像的人体三维坐姿姿态估计方法,建立坐姿时 座椅面体压分布与人体三维姿态之间的跨域联系。 设计了一套基于压力-视觉的坐姿训练系统,将阵列式压力传感器嵌入在座 椅面中感知坐姿变换,利用时间戳实现压力图像和双目视觉图像的同步匹配。 采取双边滤波消除压力图像的尖峰噪声;依靠 OpenPose 姿态估计、三角测量等手段从双目视觉图像中提出 19 个三维关键点;为提高姿态估计精度,提出随机梯度下降最小化 损失函数的方法来优化三维关键点坐标,并利用 3D 高斯滤波器进一步生成 3D 关键点置信度图。 设计一个基于多层卷积神经 网络的压力-视觉跨域深度学习模型,以连续的多帧压力图像作为模型输入,包含三维关键点坐标及其置信度图的 3D 姿态估计 结果作为监督对模型进行训练。 算法依靠椅面上的阵列传感器接触感知坐姿时的压力分布,就能够准确的估计包含 19 个人体 关键点的三维坐姿姿态,在验证集上测试,19 个关键点平均误差 9. 7 cm。

    Abstract:

    Aiming at the interference of the visual pose estimation method, such as cover and occlusion, a method of estimating human three-dimensional sitting posture based on the seat surface pressure image is proposed. The cross-domain relationship between seat surface pressure distribution and human three-dimensional posture is established. A posture training system based on pressure and vision is designed. The array pressure sensor is embedded in the seat surface to perceive the posture, and the time stamp is used to realize the synchronization of the visual image matching with the binocular camera. Bilateral filtering is used to eliminate the peak noise of pressure images. Nineteen 3D keypoints are extracted from binocular vision images by OpenPose estimation and triangulation. To improve the accuracy of attitude estimation, a stochastic gradient descent method to minimize the loss function is proposed to optimize the coordinates of 3D keypoints. The 3D confidence graph of keypoints is further generated by 3D Gaussian filter. A multi-layer convolutional neural network pressure-vision cross-domain deep learning model is formulated. Continuous multi-frame pressure images are used as input of the model, and 3D pose estimation results of 3D key point coordinates and their confidence graphs are used as supervision. Based on the pressure distribution of the array sensor on the chair surface, the algorithm can accurately estimate the 3D sitting posture including 19 human key points. The average error of 19 key points is 9. 7 cm on the verification set.

    参考文献
    相似文献
    引证文献
引用本文

周佳裕,蔡晋辉,章 乐,李立新,李晓宇.接触式交互感知的人体三维坐姿姿态估计[J].仪器仪表学报,2022,43(11):132-141

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-30
  • 出版日期:
文章二维码