基于轻量化智能的多机协同 SLAM 系统
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP242 TH74

基金项目:

国家自然科学基金重点项目(92164203)、重庆市研究生教育教学改革研究重点项目(yjg192019)、清华大学-宁夏银川水联网数字治水联合研究院基金(SKL-IOW-2020TC2003)项目资助


Lightweight intelligence-based multi-machine collaborative SLAM system
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    视觉多机协同即时定位与地图构建(SLAM)主要以相机作为传感器,并通过多机器人合作实现定位与建图。 然而,在 面对复杂环境时前端计算量过大,易导致整体系统精度不理想。 启发于 REVO 和 SVO 算法的轻量化特点,提出一种基于轻量 化智能的多机协同 SLAM 系统,旨在降低前端计算资源的同时提升系统可扩展性。 提出改进 REVO 算法—L-REVO,通过轻量 化改进实现前端实时运行;将 L-REVO 融合 CCMSLAM 系统后端,提出一种完整的多机协同 SLAM 架构;调整前端传感器和算 法,分别验证前端为同构或异构时对系统性能的影响。 在公开数据集 TUM 上,相比 CCMSLAM 系统,该系统两种模式下定位精 度分别提高了 59. 4% 和 31. 6% ,能效比提升了 8 倍。 最后,将该系统用于室内场景实验,前端功耗仅 1. 43 W,验证了所提系统 的可行性和有效性。

    Abstract:

    Vision multi-robot cooperative SLAM mainly uses cameras as sensors and achieves localization and map building through multi-robot cooperation. However, the front-end computation is too large in the face of complex environments, which tends to lead to unsatisfactory overall system accuracy. Inspired by the lightweight features of REVO and SVO algorithms, this article proposes a multirobot cooperative SLAM system based on lightweight intelligence, aiming to reduce front-end computational resources while improving system scalability. This article proposes an improved REVO algorithm-L-REVO to realize the front-end real-time operation through lightweight improvement; fusing L-REVO with the back-end of CCMSLAM system to propose a complete multi-machine collaborative SLAM architecture; adjusting the front-end sensors and algorithms to verify the impact on system performance when the front-end is homogeneous or heterogeneous, respectively. On the public dataset TUM, the system improves the localization accuracy by 59. 4% and 31. 6% in both modes, respectively, and the energy efficiency ratio by 8 times compared with the CCMSLAM system. Finally, the system is used for indoor scenario experiments with a front-end power consumption of only 1. 43 W, which verifies the feasibility and effectiveness of the proposed system.

    参考文献
    相似文献
    引证文献
引用本文

陈昌川,全锐杨,张 谦,夏佩敏,乔 飞.基于轻量化智能的多机协同 SLAM 系统[J].仪器仪表学报,2022,43(12):188-198

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-04
  • 出版日期:
文章二维码