基于自适应标签和稀疏学习相关滤波的红外目标跟踪算法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391 TH741

基金项目:

国家自然科学基金(62006240)、陕西省自然科学基础研究计划(2021JQ-373)项目资助


Research on infrared object tracking algorithm via adaptive label and sparse-learning correlation filter
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对背景杂乱、遮挡、热交叉以及目标形变等复杂跟踪场景下目标跟踪算法出现性能严重退化问题,提出一种基于自适 应标签和稀疏学习相关滤波的实时红外单目标跟踪算法。 首先,根据目标响应情况自适应地构造样本标签,通过自适应标签训 练提升相关滤波器的分类能力,抑制干扰区域对跟踪模型的污染。 其次,加入稀疏学习策略,通过目标响应 L1 范数抑制复杂跟 踪场景下目标响应多峰分布,提高跟踪算法的鲁棒性;与基线算法相比,该算法精度和 AUC 分别提升了 19. 3% 和 39. 8% 。 在数 据集 GTOT、RGBT234 和 VOT-2016TIR 上的实验结果表明,该算法对上述复杂跟踪场景具有良好的应对能力,运行速度超过 35 fps,综合性能优于对比跟踪算法。

    Abstract:

    To deal with the serious performance degradation of target tracking algorithms in complex tracking scenes, such as background clutter, occlusion, thermal crossover, and target deformation, a real-time infrared single object tracking algorithm based on the adaptive label and sparse-learning correlation filter is proposed. First, sample labels are constructed based on the target response adaptively, and the discrimination ability of the correlation filter is enhanced by training with adaptive sample labels, which suppresses the pollution of the interference region to the tracking model. Secondly, the sparse learning strategy is introduced to suppress the multi-peak distribution of the response map in complex tracking scenes by its L1 norm, resulting in improving the robustness of the tracking algorithm. Compared with the baseline algorithm, the precision and AUC of the proposed algorithm are improved by 19. 3% and 39. 8% , respectively. Experimental results on datasets GTOT, RGBT234, and VOT-2016TIR show that the proposed algorithm has a strong ability to deal with the above complex tracking scenes. Its running speed is over 35 fps, and its comprehensive performance is better than the compared tracking algorithms.

    参考文献
    相似文献
    引证文献
引用本文

黄月平,李小锋,卢瑞涛,齐乃新,张胜修.基于自适应标签和稀疏学习相关滤波的红外目标跟踪算法研究[J].仪器仪表学报,2022,43(12):199-208

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-04
  • 出版日期:
文章二维码