基于时频特征融合与 GWO-ELM 的棒控电源早期故障状态辨识方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH86 TL362

基金项目:

河北省自然科学基金(E2021202068)项目资助


Early fault state identification method of the rod control system power equipment based on time-frequency characteristics fusion and GWO-ELM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对核电棒控系统电源(PWE)早期故障状态辨识问题,提出一种基于融合时域与时频域的故障特征和灰狼优化算法 (GWO)的极限学习机(ELM)辨识方法。 首先,根据棒控电源 PWE 工作原理和控制棒驱动机构的驱动电流,利用电流上升时间 分析了早期波形形态与早期故障模式。 然后,构建融合电流上升时间、均方根-差分和和小波包奇异熵的故障时频特征,分析了 特征的可区分性。 进而,采用 GWO 算法进行 ELM 分类器参数择优,建立 GWO-ELM 模型实现 PWE 早期故障状态的辨识,以提 高辨识精度。 最后,通过开展不同特征组合和辨识模型比对试验,结果表明所提方法能有效实现棒控电源早期故障识别诊断, 且平均辨识准确度可达 98. 86% 。

    Abstract:

    To address the problem of early fault state identification of the nuclear rod control system and rod position system power equipment (PWE), this article proposes an identification method based on the fusion of fault features in time domain and time-frequency domain and extreme learning machine (ELM) of grey wolf optimizer (GWO). Firstly, according to the working principle of PWE and the driving current of control rod drive mechanism, the early waveform shape and early fault mode are analyzed by using the current rise time. Then, the fault time-frequency features are constructed, which are fused with current rise time, root mean square difference summation and wavelet packet singular entropy. The discriminability of the features is analyzed. Then, the GWO algorithm can optimize parameters of the ELM classifier. The GWO-ELM model is formulated to realize the identification of early fault states of PWE, which can improve the identification accuracy. Finally, through the comparison test of different feature combinations and identification models, the results show that the proposed method can effectively realize the early fault identification and diagnosis of rod control system power supply, and the average identification accuracy can reach 98. 86% .

    参考文献
    相似文献
    引证文献
引用本文

唐圣学,马晨阳,勾 泽.基于时频特征融合与 GWO-ELM 的棒控电源早期故障状态辨识方法[J].仪器仪表学报,2023,44(1):121-130

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-04
  • 出版日期:
文章二维码